用户名: 密码: 验证码:
Thermodynamic Models for Correlation of Solubility of Hexaquocobalt(II) Bis(p-toluenesulfonate) in Liquid Mixtures of Water and Ethanol from 288.15 to 333.15 K
详细信息    查看全文
  • 作者:Chao Yu ; Zhijuan Huang ; Zuoxiang Zeng ; Weilan Xue
  • 关键词:Hexaquocobalt(II) bis(p ; toluenesulfonate) ; Molecular ; Thermodynamic correlation ; Solubility
  • 刊名:Journal of Solution Chemistry
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:45
  • 期:3
  • 页码:395-409
  • 全文大小:932 KB
  • 参考文献:1.Holmes, S.M., Mckinley, S.G., Girolami, G.S., Szalay, P.S., Dunbar, K.R.: Transition metal p-toluenesulfonates. Inorg. Synth. 33, 91–103 (2002)
    2.Winter, S., Seichter, W., Weber, E.: Syntheses and crystal structures of cobalt and nickel complexes of 2,6-bis(hydroxymethyl) pyridine. J. Coord. Chem. 57, 997–1014 (2004)CrossRef
    3.Withers, J.R., Ruschmann, C., Bojang, P., Parkin, S., Holmes, S.M.: Synthesis and structural characterization of bi- and trimetallic octacyanometalate(IV) complexes:[Δ,Λ-MII(en)3][cis-MII(en)2(OH2)][MIV(CN)8]·2H2O and [cis-MII(en)2 (OH2)]2[(μ-NC)2MIV(CN)6]·4H2O (MII = Mn Co, Ni; MIV = Mo, W). Inorg. Chem. 44, 352–358 (2005)CrossRef
    4.Agarwal, U.S., Venkatarishnan, B.V., Jalan, R., Sreekumar, T.V., Ayodhya, S.R., Jain, A.K., Jadimath, S.P., Sudan, P., KelKar, A.G.: Oxygen-scavenging polyesters. US Patent 20140193629 A1 (2014)
    5.Agarwal, U.S., Venkatakrishnan, B.V., Jadimath, S.P., Ayodhya, S.R.: Oxygen scavenging packaging articles. WO Patent 2013061333 A2 (2013)
    6.Noubigh, A., Aydi, A., Abderrabba, M.: Experimental measurement and correlation of solubility data and thermodynamic properties of protocatechuic acid in four organic solvents. J. Chem. Eng. Data 60, 514–518 (2015)CrossRef
    7.Jouyban-Gharamaleki, V., Jouyban-Gharamaleki, K., Soleymani, J., Acree, W.E., Jouyban, A.: Solubility determination of tris(hydroxymethyl)aminomethane in water + methanol mixtures at various temperatures using a laser monitoring technique. J. Chem. Eng. Data 59, 2305–2309 (2014)CrossRef
    8.Hu, Y.H., Liu, X., Yang, W.G., Yin, J.J., Liu, Y., Liang, M.M.: Measurement and correlation of the solubility of 4-methylbenzoic acid in (methanol + acetic acid) binary solvent mixtures. J. Mol. Liq. 193, 213–219 (2014)CrossRef
    9.Yang, W.G., Jiang, X.M., Hu, Y.H., Shi, Y., Sun, H.L., Li, Y.L.: Solubility of fumaric acid in aqueous alcohol solutions. J. Solution Chem. 42, 1591–1601 (2013)CrossRef
    10.Kim, K.J., Kim, H.S., Sim, J.S.: Solubilities of octahydro-1,3,5,7-tetranitro- 1,3,5,7-tetrazocine in γ-butyrolactone + water, dimethylsulfoxide + water, and N-methyl pyrrolidone + water. J. Chem. Eng. Data 58, 2410–2413 (2013)CrossRef
    11.Haq, N., Alanazi, F.K., Alsarra, I.A., Shakeel, F.: Solubility of gliclazide in transcutol + water co-solvent mixtures at (298.15 to 333.15) K. Croat. Chem. Acta 87, 255–260 (2014)CrossRef
    12.Yu, C., Zeng, Z.X., Xue, W.L.: Measurement and correlation of the solubility of hexaquonickel(II)bis(p-toluenesulfonate) in water + ethanol solvents within 288.15–333.15 K. Ind. Eng. Chem. Res. 54, 3961–3967 (2015)CrossRef
    13.Chen, J., Zeng, Z.X., Xue, W.L., Wang, D., Huan, Y.: Determination and correlation of solubility of decahydropyrazino [2,3-b]pyrazine] in methanol, ethanol, and 2-propanol. Ind. Eng. Chem. Res. 50, 11755–11762 (2011)CrossRef
    14.Zhang, J.L., Yang, X.Z., Han, Y., Li, W., Wang, J.K.: Measurement and correlation for solubility of levofloxacin in six solvents at temperatures from 288.15 to 328.15 K. Fluid Phase Equilibr. 335, 1–7 (2012)CrossRef
    15.Zhang, H., Yin, Q.X., Liu, Z.K., Gong, J.B., Bao, Y., Zhang, M.J., Hao, H.X., Hou, B.H., Xie, C.: Measurement and correlation of solubility of dodecanedioic acid in different pure solvents from T = (288.15 to 323.15) K. J. Chem. Thermodyn. 68, 270–274 (2014)CrossRef
    16.Delley, B.: An allelectron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 92, 508–517 (1990)CrossRef
    17.Delley, B.: Fast calculation of electrostatics in crystals and large molecules. J. Phys. Chem. 100, 6107–6110 (1996)CrossRef
    18.Delley, B.: From molecules to solids with the DMol3 approach. J. Chem. Phys. 113, 7756–7764 (2000)CrossRef
    19.Becke, A.D.: A multicenter numerical integration scheme for polyatomic molecules. J. Chem. Phys. 88, 2547–2549 (1988)CrossRef
    20.Lee, C., Yang, W., Parr, R.G.: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 786–789 (1988)
    21.Ma, Q.M., Xie, Z., Wang, J., Liu, Y., Li, Y.C.: Structures, stabilities and magnetic properties of small Co clusters. Phys. Lett. A 358, 289–296 (2006)CrossRef
    22.Xie, Z., Ma, Q.M., Liu, Y., Li, Y.C.: First-principles study of the stability and Jahn-Teller distortion of nickel clusters. Phys. Lett. A 342, 459–467 (2005)CrossRef
    23.Apelblat, A., Manzurola, E.: Solubilities of o-acetylsalicylic, 4-aminosalicylic, 3,5-dinitrosalicylic, and p-toluic acid, and magnesium-DL-aspartate in water from T = (278 to 348) K. J. Chem. Thermodyn. 31, 85–91 (1999)CrossRef
    24.Apelblat, A., Manzurola, E.: Solubilities of manganese, cadmium, mercury and lead acetates in water from T = 278.15 K to T = 340.15 K. J. Chem. Thermodyn. 33, 147–153 (2001)CrossRef
    25.Luan, Q.H., Wang, Y.L., Wang, G., Yang, J.X., Hao, H.X.: Measurement and correlation of solubility of calcium-L-lactate pentahydrate in ethanol + water and acetone + water systems. J. Chem. Eng. Data 59, 2642–2648 (2014)CrossRef
    26.Jouyban-Gharamaleki, A., Acree, W.E.: Comparison of models for describing multiple peaks in solubility profiles. Int. J. Pharm. 167, 177–182 (1998)CrossRef
    27.Zhou, Z.M., Qu, Y.X., Wang, J.D., Wang, S., Liu, J.S., Wu, M.: Measurement and correlation of solubilities of (Z)-2-(2-aminothiazol-4-yl)-2-methoxyiminoacetic acid in different pure solvents and binary mixtures of water + (ethanol, methanol, or glycol). J. Chem. Eng. Data 56, 1622–1628 (2011)CrossRef
    28.Liu, Y., Luo, X.S., Shen, Z.H., Lu, J., Ni, X.W.: Studies on molecular structure of ethanol–water clusters by fluorescence spectroscopy. Opt. Rev. 13, 303–307 (2006)CrossRef
    29.Su, J.H., Qian, C., Luo, N.Z., Xiang, X.G., Xu, Y.M., Chen, X.Z.: Experimental measurement and modeling of the solubility of biotin in six pure solvents at temperatures from 298.15 K to 333.85 K. J. Chem. Eng. Data 59, 3894–3899 (2014)CrossRef
    30.Krug, R.R., Hunter, W.G., Grieger, R.A.: Enthalpy–entropy compensation. 2. Separation of the chemical from the statistical effect. J. Phys. Chem. 80, 2341–2351 (1976)CrossRef
    31.Yang, P.P., Wen, Q.S., Wu, J.L., Zhuang, W., Zhang, Y.H., Ying, H.J.: Determination of solubility of cAMPNa in water + (ethanol, methanol, and acetone) within 293.15–313.15 K. Ind. Eng. Chem. Res. 53, 10803–10809 (2014)CrossRef
    32.Fang, J., Zhang, M.J., Zhu, P.P., Ouyang, J.B., Gong, J.B., Chen, W., Xu, F.X.: Solubility and solution thermodynamics of sorbic acid in eight pure organic solvents. J. Chem. Thermodyn. 85, 202–209 (2015)CrossRef
  • 作者单位:Chao Yu (1)
    Zhijuan Huang (1)
    Zuoxiang Zeng (1)
    Weilan Xue (1)

    1. Institute of Chemical Engineering, East China University of Science and Technology, 200237, Shanghai, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Physical Chemistry
    Industrial Chemistry and Chemical Engineering
    Geochemistry
    Oceanography
    Inorganic Chemistry
    Condensed Matter
  • 出版者:Springer Netherlands
  • ISSN:1572-8927
文摘
The solubilities of hexaquocobalt(II) bis(p -toluenesulfonate) [Co(OTs)2·6H2O] in water and ethanol mixed solvents with ethanol mole fractions of 0–0.342 were determined from 288.15 to 333.15 K by a synthetic method. The generated data were well correlated with the modified Apelblat equation, the Redlich–Kister (CNIBS/R–K) model, and the hybrid model in which the mean deviations are less than 3.06 %. Materials Studio DMol 3 (Accelrys Software Inc.) was chosen to investigate the molecular modeling. The results indicated that the increase of solubility of Co(OTs)2·6H2O with increase of the initial mole fraction of ethanol (x 2) is due to stronger interactions occurring between ethanol and Co(OTs)2·6H2O. Moreover, this tends to level out when x 2 is greater than 0.228 because some new clusters will be formed by the water and ethanol molecules in the binary mixture. The modified van’t Hoff equation was adopted to analyze the enthalpy, entropy, and Gibbs energy, indicating the dissolution process of Co(OTs)2·6H2O in mixed solvents is endothermic, spontaneous, and entropy driven.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700