用户名: 密码: 验证码:
Thromboresistant and endothelialization effects of dopamine-mediated heparin coating on a stent material surface
详细信息    查看全文
  • 作者:In-Ho Bae (12)
    In-Kyu Park (1)
    Dae Sung Park (1)
    Haeshin Lee (3)
    Myung Ho Jeong (12) inovation15@hotmail.com
  • 刊名:Journal of Materials Science Materials in Medicine
  • 出版年:2012
  • 出版时间:May 2012
  • 年:2012
  • 卷:23
  • 期:5
  • 页码:1259-1269
  • 全文大小:650.0 KB
  • 参考文献:1. Dibra A, Kastrati A, Alfonso F, Seyfarth M, Perez-Vizcayno MJ, Mehilli J, Schomig A. Effectiveness of drug-eluting stents in patients with bare-metal in-stent restenosis: meta-analysis of randomized trials. J Am Coll Cardiol. 2007;49:616–23.
    2. Scott NA. Restenosis following implantation of bare metal coronary stents: pathophysiology and pathways involved in the vascular response to injury. Adv Drug Deliv Rev. 2006;58:358–76.
    3. Tung R, Kaul S, Diamond GA, Shah PK. Narrative review: drug-eluting stents for the management of restenosis: a critical appraisal of the evidence. Ann Intern Med. 2006;144:913–9.
    4. Leon MB. Late thrombosis a concern with drug-eluting stents. J Interv Cardiol. 2007;20:26–9.
    5. Ong AT, Serruys PW. Technology Insight: an overview of research in drug-eluting stents. Nat Clin Pract Cardiovasc Med. 2005;2:647–58.
    6. Welt FG, Rogers C. Inflammation and restenosis in the stent era. Arterioscler Thromb Vasc Biol. 2002;22:1769–76.
    7. Capila I, Linhardt RJ. Heparin–protein interactions. Angew Chem Int Ed Engl. 2002;41:391–412.
    8. Vrolix MC, Legrand VM, Reiber JH, Grollier G, Schalij MJ, Brunel P, Martinez-Elbal L, Gomez-Recio M, Bar FW, Bertrand ME, Colombo A, Brachman J. Heparin-coated Wiktor stents in human coronary arteries (MENTOR trial). MENTOR Trial Investigators. Am J Cardiol. 2000;86:385–9.
    9. Kim YJ, Kang IK, Huh MW, Yoon SC. Surface characterization and in vitro blood compatibility of poly(ethylene terephthalate) immobilized with insulin and/or heparin using plasma glow discharge. Biomaterials. 2000;21:121–30.
    10. Chen H, Chen Y, Sheardown H, Brook MA. Immobilization of heparin on a silicone surface through a heterobifunctional PEG spacer. Biomaterials. 2005;26:7418–24.
    11. Liu Q, Ding J, Mante FK, Wunder SL, Baran GR. The role of surface functional groups in calcium phosphate nucleation on titanium foil: a self-assembled monolayer technique. Biomaterials. 2002;23:3103–11.
    12. Fu J, Ji J, Yuan W, Shen J. Construction of anti-adhesive and antibacterial multilayer films via layer-by-layer assembly of heparin and chitosan. Biomaterials. 2005;26:6684–92.
    13. Meng S, Liu Z, Shen L, Guo Z, Chou LL, Zhong W, Du Q, Ge J. The effect of a layer-by-layer chitosan–heparin coating on the endothelialization and coagulation properties of a coronary stent system. Biomaterials. 2009;30:2276–83.
    14. Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-inspired surface chemistry for multifunctional coatings. Science. 2007;318:426–30.
    15. Rich DH. SingJ. In: Gross E, Meinenhofer J, editors. The peptides. New York: Academic Press; 1982. p. 243–63.
    16. You I, Kang S, Byun Y, Lee H. Enhancement of blood compatibility of poly(urethane) Substrates by Mussel-inspired adhesive heparin coating. Bioconjug Chem. 2011;22:1264–9.
    17. Gilles MA, Hudson AQ, Borders CL Jr. Stability of water-soluble carbodiimides in aqueous solution. Anal Biochem. 1990;184:244–8.
    18. Jee KS, Park HD, Park KD, Kim YH, Shin JW. Heparin conjugated polylactide as a blood compatible material. Biomacromolecules. 2004;5:1877–81.
    19. Hinrichs W, Hoopen H, Wissink M, Engbers G, Feijen J. Design of a new type of coating for the controlled release of heparin. J Control Rel. 1997;45:163–76.
    20. Chen JL, Li LQ, Chen JY, Chen C, Huang N. Improving blood-compatibility of titanium by coating collagen-heparin multilayers. Appl Surf Sci. 2009;255:6894–900.
    21. Poussard L, Burel F, Couvercelle JP, Merhi Y, Tabrizian M, Bunel C. Hemocompatibilty of new ionic polyurethanes: influence of carboxylic group insertion modes. Biomaterials. 2004;25:3473–83.
    22. Rodrigues SN, Goncalves IC, Martins MC, Barbosa MA, Ratner BD. Fibrinogen adsorption, platelet adhesion and activation on mixed hydroxyl-/methyl-terminated self-assembled monolayers. Biomaterials. 2006;27:5357–67.
    23. Chandler WL, Solomon DD, Hu CB, Schmer G. Estimation of surface-bound heparin activity: a comparison of methods. J Biomed Mater Res. 1988;22:497–508.
    24. Yang W, Ge J, Liu H, Zhao K, Liu X, Qu X, Li W, Huang Y, Sun A, Zou Y. Arsenic trioxide eluting stent reduces neointima formation in a rabbit iliac artery injury model. Cardiovasc Res. 2006;72:483–93.
    25. Schwartz RS, Edelman E, Virmani R, Carter A, Granada JF, Kaluza GL, Chronos NA, Robinson KA, Waksman R, Weinberger J, Wilson GJ, Wilensky RL. Drug-eluting stents in preclinical studies: updated consensus recommendations for preclinical evaluation. Circ Cardiovasc Interv. 2008;1:143–53.
    26. Hou C, Yuan Q, Huo D, Zheng S, Zhan D. Investigation on clotting and hemolysis characteristics of heparin-immobilized polyether sulfones biomembrane. J Biomed Mater Res A. 2008;85:847–52.
    27. Wissink MJ, Beernink R, Pieper JS, Poot AA, Engbers GH, Beugeling T, van Aken WG, Feijen J. Immobilization of heparin to EDC/NHS-crosslinked collagen. Characterization and in vitro evaluation. Biomaterials. 2001;22:151–63.
    28. Waite JH. Reverse engineering of bioadhesion in marine mussels. Ann N Y Acad Sci. 1999;875:301–9.
    29. Papov VV, Diamond TV, Biemann K, Waite JH. Hydroxyarginine-containing polyphenolic proteins in the adhesive plaques of the marine mussel Mytilus edulis. J Biol Chem. 1995;270:20183–92.
    30. Waite JH, Qin X. Polyphosphoprotein from the adhesive pads of Mytilus edulis. Biochemistry. 2001;40:2887–93.
    31. Harrington MJ, Masic A, Holten-Andersen N, Waite JH, Fratzl P. Iron-clad fibers: a metal-based biological strategy for hard flexible coatings. Science. 2010;328:216–20.
    32. Ranade SV, Miller KM, Richard RE, Chan AK, Allen MJ, Helmus MN. Physical characterization of controlled release of paclitaxel from the TAXUS Express2 drug-eluting stent. J Biomed Mater Res A. 2004;71:625–34.
    33. Dibra A, Kastrati A, Mehilli J, Pache J, von Oepen R, Dirschinger J, Schomig A. Influence of stent surface topography on the outcomes of patients undergoing coronary stenting: a randomized double-blind controlled trial. Catheter Cardiovasc Interv. 2005;65:374–80.
    34. Lin Q, Yan J, Qiu F, Song X, Fu G, Ji J. Heparin/collagen multilayer as a thromboresistant and endothelial favorable coating for intravascular stent. J Biomed Mater Res A. 2011;96:132–41.
    35. Shin YM, Lee YB, Shin H. Time-dependent mussel-inspired functionalization of poly(l-lactide-co-varepsilon-caprolactone) substrates for tunable cell behaviors. Colloids Surf B Biointerfaces. 2011;87:79–87.
    36. Nunes GL, Thomas CN, Hanson SR, Barry JJ, King SB III, Scott NA. Inhibition of platelet-dependent thrombosis by local delivery of heparin with a hydrogel-coated balloon. Circulation. 1995;92:1697–700.
    37. Shim D, Wechsler DS, Lloyd TR, Beekman RH III. Hemolysis following coil embolization of a patent ductus arteriosus. Catheter Cardiovasc Diagn. 1996;39:287–90.
    38. Larm O, Larsson R, Olsson P. A new non-thrombogenic surface prepared by selective covalent binding of heparin via a modified reducing terminal residue. Biomater Med Devices Artif Organs. 1983;11:161–73.
    39. Park KD, Okano T, Nojiri C, Kim SW. Heparin immobilization onto segmented polyurethane-urea surfaces: effect of hydrophilic spacers. J Biomed Mater Res. 1988;22:977–92.
    40. Senatore F, Shankar H, Chen JH, Avantsa S, Feola M, Posteraro R, Blackwell E. In vitro and in vivo studies of heparinized-collageno-elastic tubes. J Biomed Mater Res. 1990;24:939–57.
    41. Kashiwagi T, Ito Y, Imanishi Y. Non-thrombogenicity of organic polymers by blending with alkylamine–heparin complexes. Biomaterials. 1993;14:1145–53.
    42. Erdtmann M, Keller R, Baumann H. Photochemical immobilization of heparin, dermatan sulphate, dextran sulphate and endothelial cell surface heparan sulphate onto cellulose membranes for the preparation of athrombogenic and antithrombogenic polymers. Biomaterials. 1994;15:1043–8.
    43. Hansi C, Arab A, Rzany A, Ahrens I, Bode C, Hehrlein C. Differences of platelet adhesion and thrombus activation on amorphous silicon carbide, magnesium alloy, stainless steel, and cobalt chromium stent surfaces. Catheter Cardiovasc Interv. 2009;73:488–96.
    44. Ren Y, Yang K, Zhang B. In vitro study of platelet adhesion on medical nickel-free stainless steel surface. Mater Lett. 2005;59:1785–9.
    45. Li L, Tu M, Mou S, Zhou C. Preparation and blood compatibility of polysiloxane/liquid-crystal composite membranes. Biomaterials. 2001;22:2595–9.
    46. te Velthuis H, Baufreton C, Jansen PG, Thijs CM, Hack CE, Sturk A, Wildevuur CR, Loisance DY. Heparin coating of extracorporeal circuits inhibits contact activation during cardiac operations. J Thorac Cardiovasc Surg. 1997;114:117–22.
    47. Vogler EA, Graper JC, Harper GR, Sugg HW, Lander LM, Brittain WJ. Contact activation of the plasma coagulation cascade. I. Procoagulant surface chemistry and energy. J Biomed Mater Res. 1995;29:1005–16.
    48. Suzuki T, Kopia G, Hayashi S, Bailey LR, Llanos G, Wilensky R, Klugherz BD, Papandreou G, Narayan P, Leon MB, Yeung AC, Tio F, Tsao PS, Falotico R, Carter AJ. Stent-based delivery of sirolimus reduces neointimal formation in a porcine coronary model. Circulation. 2001;104:1188–93.
    49. Farb A, Heller PF, Shroff S, Cheng L, Kolodgie FD, Carter AJ, Scott DS, Froehlich J, Virmani R. Pathological analysis of local delivery of paclitaxel via a polymer-coated stent. Circulation. 2001;104:473–9.
    50. Virmani R, Kolodgie FD, Farb A, Lafont A. Drug eluting stents: are human and animal studies comparable? Heart. 2003;89:133–8.
    51. Virmani R, Guagliumi G, Farb A, Musumeci G, Grieco N, Motta T, Mihalcsil L, Tespili M, Valsecchi O, Kolodgie FD. Localized hypersensitivity and late coronary thrombosis secondary to a sirolimus-eluting stent: should we be cautious? Circulation. 2004;109:701–5.
    52. Joner M, Finn AV, Farb A, Mont EK, Kolodgie FD, Ladich E, Kutys R, Skorija K, Gold HK, Virmani R. Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J Am Coll Cardiol. 2006;48:193–202.
    53. Oyabu J, Ueda Y, Ogasawara N, Okada K, Hirayama A, Kodama K. Angioscopic evaluation of neointima coverage: sirolimus drug-eluting stent versus bare metal stent. Am Heart J. 2006;152:1168–74.
    54. Schwartz RS, Chronos NA, Virmani R. Preclinical restenosis models and drug-eluting stents: still important, still much to learn. J Am Coll Cardiol. 2004;44:1373–85.
    55. Kong D, Melo LG, Mangi AA, Zhang L, Lopez-Ilasaca M, Perrella MA, Liew CC, Pratt RE, Dzau VJ. Enhanced inhibition of neointimal hyperplasia by genetically engineered endothelial progenitor cells. Circulation. 2004;109:1769–75.
    56. Werner N, Nickenig G. Clinical and therapeutical implications of EPC biology in atherosclerosis. J Cell Mol Med. 2006;10:318–32.
    57. Popat KC, Leoni L, Grimes CA, Desai TA. Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials. 2007;28:3188–97.
    58. Bos GW, Scharenborg NM, Poot AA, Engbers GH, Beugeling T, van Aken WG, Feijen J. Proliferation of endothelial cells on surface-immobilized albumin-heparin conjugate loaded with basic fibroblast growth factor. J Biomed Mater Res. 1999;44:330–40.
    59. Li G, Yang P, Qin W, Maitz MF, Zhou S, Huang N. The effect of coimmobilizing heparin and fibronectin on titanium on hemocompatibility and endothelialization. Biomaterials. 2011;32:4691–703.
  • 作者单位:1. The Heart Research Center of Chonnam National University Hospital Designated by Korea Ministry of Health and Welfare, Gwangju, 501-757 Republic of Korea2. Korea Cardiovascular Stent Research Institute, Jangsung, 501-893 Republic of Korea3. Department of Chemistry, KAIST, 335 Science Rd, Daejeon, 305-701 Republic of Korea
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biomaterials
    Characterization and Evaluation Materials
    Polymer Sciences
    Metallic Materials
    Ceramics,Glass,Composites,Natural Materials
    Surfaces and Interfaces and Thin Films
  • 出版者:Springer Netherlands
  • ISSN:1573-4838
文摘
Heparinization of surfaces has proven a successful strategy to prevent thrombus formation. Inspired by the composition of adhesive proteins in mussels, the authors used dopamine to immobilize heparin on a stent surface. This study aimed to assess the thromboresistant and endothelialization effects of dopamine-mediated heparin (HPM) coating on a stent material surface. The HPM was synthesized by bonding dopamine and heparin chemically. Cobalt–chromium (Co–Cr) alloy disks were first placed in the HPM solution and applied to surface stability then underwent thromboresistant tests and human umbilical vein endothelial cells (HUVEC) cytotoxicity assays. The results showed not only thromboresistant activity and a stable state of heparin on the surfaces after investigation with toluidine blue and thrombin activation assay but also proliferation of HUVEC in vitro. Studies on animals showed that the HPM-coated stent has no obvious inflammation response and increasing of restenosis rate compared to the bare metal stent (BMS) indicating good biocompatibility as well as safety in its in vivo application. Moreover, improving the endothelial cell (EC) proliferation resulted in a higher strut-covering rate (i.e., endothelialization) with shuttle-shaped EC in the HPM-coated stent group compared to that of the BMS group. These results suggest that this facile coating approach could significantly promote endothelialization and offer greater safety than the BMS for its much improved thromboresistant property. Moreover, it may offer a platform for conjugating secondary drugs such as anti-proliferative drugs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700