用户名: 密码: 验证码:
Carboxydotrophic growth of Geobacter sulfurreducens
详细信息    查看全文
  • 作者:Jeanine S. Geelhoed ; Anne M. Henstra…
  • 关键词:Carbon monoxide ; Fumarate reduction ; Geobacter sulfurreducens ; Carboxydotrophic growth ; Microbial metabolism
  • 刊名:Applied Microbiology and Biotechnology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:100
  • 期:2
  • 页码:997-1007
  • 全文大小:987 KB
  • 参考文献:Abrini J, Naveau H, Nyns EJ (1994) Clostridium autoethanogenum sp nov., an anaerobic bacterium that produces ethanol from carbon monoxide. Arch Microbiol 161:345–351. doi:10.​1007/​bf00303591 CrossRef
    Afkar E, Reguera G, Schiffer M, Lovley DR (2005) A novel Geobacteraceae-specific outer membrane protein J (OmpJ) is essential for electron transport to Fe (III) and Mn (IV) oxides in Geobacter sulfurreducens. BMC Microbiol 5:41. doi:10.​1186/​1471-2180-5-41 PubMed PubMedCentral CrossRef
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. doi:10.​1016/​S0022-2836(05)80360-2 PubMed CrossRef
    Bengelsdorf FR, Straub M, Dürre P (2013) Bacterial synthesis gas (syngas) fermentation. Environ Technol 34:1639–1651. doi:10.​1080/​09593330.​2013.​827747 PubMed CrossRef
    Bond DR, Lovley DR (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69:1548–1555PubMed PubMedCentral CrossRef
    Bruno-Barcena JM, Chinn MS, Grunden AM (2013) Genome sequence of the autotrophic acetogen Clostridium autoethanogenum JA1-1 strain DSM 10061, a producer of ethanol from carbon monoxide. Genome Announc 1:e00628–00613. doi:10.​1128/​genomeA.​00628-13 PubMed PubMedCentral CrossRef
    Butler JE, Glaven RH, Esteve-Nunez A, Nunez C, Shelobolina ES, Bond DR, Lovley DR (2006) Genetic characterization of a single bifunctional enzyme for fumarate reduction and succinate oxidation in Geobacter sulfurreducens and engineering of fumarate reduction in Geobacter metallireducens. J Bacteriol 188:450–455PubMed PubMedCentral CrossRef
    Caccavo F, Lonergan DJ, Lovley DR, Davis M, Stolz JF, McInerney MJ (1994) Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl Environ Microbiol 60:3752–3759PubMed PubMedCentral
    Call DF, Logan BE (2011) Lactate oxidation coupled to iron or electrode reduction by Geobacter sulfurreducens PCA. Appl Environ Microbiol 77:8791–8794. doi:10.​1128/​aem.​06434-11 PubMed PubMedCentral CrossRef
    Chapelle FH, Bradley PM (2007) Hydrologic significance of carbon monoxide concentrations in ground water. Ground Water 45:272–280. doi:10.​1111/​j.​1745-6584.​2007.​00284.​x PubMed CrossRef
    Coppi MV (2005) The hydrogenases of Geobacter sulfurreducens: a comparative genomic perspective. Microbiology 151:1239–1254PubMed CrossRef
    Coppi MV, O’Neil RA, Lovley DR (2004) Identification of an uptake hydrogenase required for hydrogen-dependent reduction of Fe(III) and other electron acceptors by Geobacter sulfurreducens. J Bacteriol 186:3022–3028PubMed PubMedCentral CrossRef
    Coppi MV, O’Neil RA, Leang C, Kaufmann F, Methe BA, Nevin KP, Woodard TL, Liu A, Lovley DR (2007) Involvement of Geobacter sulfurreducens SfrAB in acetate metabolism rather than intracellular, respiration-linked Fe(III) citrate reduction. Microbiology 153:3572–3585PubMed CrossRef
    Daniel SL, Hsu T, Dean SI, Drake HL (1990) Characterization of the H2-dependent and CO-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui. J Bacteriol 172:4464–4471PubMed PubMedCentral
    Davidova MN, Tarasova NB, Mukhitova FK, Karpilova IU (1994) Carbon monoxide in metabolism of anaerobic bacteria. Can J Microbiol 40:417–425PubMed CrossRef
    Dehning I, Schink B (1989) Malonomonas rubra gen. nov. sp. nov., a microaerotolerant anaerobic bacterium growing by decarboxylation of malonate. Arch Microbiol 151:427–433. doi:10.​1007/​bf00416602 CrossRef
    Dumas C, Basseguy R, Bergel A (2008) Electrochemical activity of Geobacter sulfurreducens biofilms on stainless steel anodes. Electrochim Acta 53:5235–5241CrossRef
    Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. doi:10.​1093/​nar/​gkh340 PubMed PubMedCentral CrossRef
    Flynn TM, Sanford RA, Domingo JWS, Ashbolt NJ, Levine AD, Bethke CM (2012) The active bacterial community in a pristine confined aquifer. Water Resourc Res 48, W09510. doi:10.​1029/​2011wr011568 CrossRef
    Galushko AS, Schink B (2000) Oxidation of acetate through reactions of the citric acid cycle by Geobacter sulfurreducens in pure culture and in syntrophic coculture. Arch Microbiol 174:314–321PubMed CrossRef
    Gardy JL, Laird MR, Chen F, Rey S, Walsh CJ, Ester M, Brinkman FSL (2005) PSORTb v. 2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. Bioinformatics 21:617–623PubMed CrossRef
    Geelhoed JS, Stams AJM (2011) Electricity-assisted biological hydrogen production from acetate by Geobacter sulfurreducens. Environ Sci Technol 45:815–820PubMed CrossRef
    Geueke B, Riebel B, Hummel W (2003) NADH oxidase from Lactobacillus brevis: a new catalyst for the regeneration of NAD. Enzym Microbiol Technol 32:205–211CrossRef
    Gregory KB, Bond DR, Lovley DR (2004) Graphite electrodes as electron donors for anaerobic respiration. Environ Microbiol 6:596–604PubMed CrossRef
    He M, Hu Z, Xiao B, Li J, Guo X, Luo S, Yang F, Feng Y, Yang G, Liu S (2009) Hydrogen-rich gas from catalytic steam gasification of municipal solid waste (MSW): influence of catalyst and temperature on yield and product composition. Int J Hydrogen Energy 34:195–203. doi:10.​1016/​j.​ijhydene.​2008.​09.​070 CrossRef
    Henstra AM, Stams AJM (2004) Novel physiological features of Carboxydothermus hydrogenoformans and Thermoterrabacterium ferrireducens. Appl Environ Microbiol 70:7236–7240. doi:10.​1128/​aem.​70.​12.​7236-7240.​2004 PubMed PubMedCentral CrossRef
    Henstra AM, Dijkema C, Stams AJM (2007) Archaeoglobus fulgidus couples CO oxidation to sulfate reduction and acetogenesis with transient formate accumulation. Environ Microbiol 9:1836–1841. doi:10.​1111/​j.​1462-2920.​2007.​01306.​x PubMed CrossRef
    Hussain A, Bruant G, Mehta P, Raghavan V, Tartakovsky B, Guiot SR (2014) Population analysis of mesophilic microbial fuel cells fed with carbon monoxide. Appl Biochem Biotechnol 172:713–726. doi:10.​1007/​s12010-013-0556-9 PubMed CrossRef
    Jensen A, Finster K (2005) Isolation and characterization of Sulfurospirillum carboxydovorans sp nov., a new microaerophilic carbon monoxide oxidizing epsilon Proteobacterium. Anton Leeuw 87:339–353. doi:10.​1007/​s10482-004-6839-y CrossRef
    Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, Muller J, Doerks T, Julien P, Roth A, Simonovic M, Bork P, von Mering C (2009) STRING 8-a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res 37:D412–D416. doi:10.​1093/​nar/​gkn760 PubMed PubMedCentral CrossRef
    Jeon WB, Cheng JJ, Ludden PW (2001) Purification and characterization of membrane-associated CooC protein and its functional role in the insertion of nickel into carbon monoxide dehydrogenase from Rhodospirillum rubrum. J Biol Chem 276:38602–38609PubMed CrossRef
    Jung GY, Kim JR, Jung HO, Park JY, Park S (1999) A new chemoheterotrophic bacterium catalyzing water-gas shift reaction. Biotechnol Lett 21:869–873CrossRef
    Kengen SWM, van der Oost J, de Vos WM (2003) Molecular characterization of H2O2-forming NADH oxidases from Archaeoglobus fulgidus. Eur J Biochem 270:2885–2894PubMed CrossRef
    Kerby RL, Ludden PW, Roberts GP (1995) Carbon monoxide dependent growth of Rhodospirillum rubrum. J Bacteriol 177:2241–2244PubMed PubMedCentral
    Kerby RL, Ludden PW, Roberts GP (1997) In vivo nickel insertion into the carbon monoxide dehydrogenase of Rhodospirillum rubrum: molecular and physiological characterization of cooCTJ. J Bacteriol 179:2259–2266PubMed PubMedCentral
    Kerby RL, Youn H, Roberts GP (2008) RcoM: a new single-component transcriptional regulator of CO metabolism in bacteria. J Bacteriol 190:3336–3343PubMed PubMedCentral CrossRef
    Klemps R, Cypionka H, Widdel F, Pfennig N (1985) Growth with hydrogen, and further physiological characteristics of Desulfotomaculum species. Arch Microbiol 143:203–208. doi:10.​1007/​bf00411048 CrossRef
    Köpke M, Held C, Hujer S, Liesegang H, Wiezer A, Wollherr A, Ehrenreich A, Liebl W, Gottschalk G, Duerre P (2010) Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc Natl Acad Sci U S A 107:13087–13092. doi:10.​1073/​pnas.​1004716107 PubMed PubMedCentral CrossRef
    Kröger A (1974) Electron-transport phosphorylation coupled to fumarate reduction in anaerobically grown Proteus rettgeri. Biochim Biophys Acta 347:273–289. doi:10.​1016/​0005-2728(74)90051-6 PubMed CrossRef
    Lee HS, Kang SG, Bae SS, Lim JK, Cho Y, Kim YJ, Jeon JH, Cha SS, Kwon KK, Kim HT, Park CJ, Lee HW, Kim SI, Chun J, Colwell RR, Kim SJ, Lee JH (2008) The complete genome sequence of Thermococcus onnurineus NA1 reveals a mixed heterotrophic and carboxydotrophic metabolism. J Bacteriol 190:7491–7499PubMed PubMedCentral CrossRef
    Lessner DJ, Li LY, Li QB, Rejtar T, Andreev VP, Reichlen M, Hill K, Moran JJ, Karger BL, Ferry JG (2006) An unconventional pathway for reduction of CO2 to methane in CO-grown Methanosarcina acetivorans revealed by proteomics. Proc Natl Acad Sci U S A 103:17921–17926. doi:10.​1073/​pnas.​0608833103 PubMed PubMedCentral CrossRef
    Letunic I, Doerks T, Bork P (2015) SMART: recent updates, new developments and status in 2015. Nucleic Acids Res 43:D257–D260. doi:10.​1093/​nar/​gku949 PubMed PubMedCentral CrossRef
    Lide DR, Frederikse HPR (eds) (1995) CRC handbook of chemistry and physics, 76th edn. CRC Press, Inc, Boca Raton
    Lindahl PA (2002) The Ni-containing carbon monoxide dehydrogenase family: light at the end of the tunnel? Biochemistry 41:2097–2105PubMed CrossRef
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin-phenol reagents. J Biol Chem 193:265–275PubMed
    Lupton FS, Conrad R, Zeikus JG (1984) CO metabolism of Desulfovibrio vulgaris strain Madison—physiological function in the absence or presence of exogeneous substrates. FEMS Microbiol Lett 23:263–268CrossRef
    Markowitz VM, Chen IM, Palaniappan K, Chu K, Szeto E, Pillay M, Ratner A, Huang J, Woyke T, Huntemann M, Anderson I, Billis K, Varghese N, Mavromatis K, Pati A, Ivanova NN, Kyrpides NC (2014) IMG 4 version of the integrated microbial genomes comparative analysis system. Nucleic Acids Res 42:D560–D567. doi:10.​1093/​nar/​gkt963 PubMed PubMedCentral CrossRef
    Marvin KA, Kerby RL, Youn H, Roberts GP, Burstyn JN (2008) The transcription regulator RcoM-2 from Burkholderia xenovorans is a cysteine-ligated hemoprotein that undergoes a redox-mediated ligand switch. Biochemistry 47:9016–9028PubMed PubMedCentral CrossRef
    Mehta P, Hussain A, Tartakovsky B, Neburchilov V, Raghavan V, Wang H, Guiot SR (2010) Electricity generation from carbon monoxide in a single chamber microbial fuel cell. Enzym Microbiol Technol 46:450–455. doi:10.​1016/​j.​enzmictec.​2010.​02.​010 CrossRef
    Methé BA, Nelson KE, Eisen JA, Paulsen IT, Nelson W, Heidelberg JF, Wu D, Wu M, Ward N, Beanan MJ, Dodson RJ, Madupu R, Brinkac LM, Daugherty SC, DeBoy RT, Durkin AS, Gwinn M, Kolonay JF, Sullivan SA, Haft DH, Selengut J, Davidsen TM, Zafar N, White O, Tran B, Romero C, Forberger HA, Weidman J, Khouri H, Feldblyum TV, Utterback TR, Van Aken SE, Lovley DR, Fraser CM (2003) Genome of Geobacter sulfurreducens: metal reduction in subsurface environments. Science 302:1967–1969PubMed CrossRef
    Meyer O, Frunzke K, Gadkari D, Jacobitz S, Hugendieck I, Kraut M (1990) Utilization of carbon monoxide by aerobes—recent advances. FEMS Microbiol Lett 87:253–260. doi:10.​1111/​j.​1574-6968.​1990.​tb04921.​x CrossRef
    Moran JJ, House CH, Vrentas JM, Freeman KH (2008) Methyl sulfide production by a novel carbon monoxide metabolism in Methanosarcina acetivorans. Appl Environ Microbiol 74:540–542. doi:10.​1128/​aem.​01750-07 PubMed PubMedCentral CrossRef
    Newman DK, Kennedy EK, Coates JD, Ahmann D, Ellis DJ, Lovley DR, Morel FMM (1997) Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum sp. nov. Arch Microbiol 168:380–388PubMed CrossRef
    O’Brien JM, Wolkin RH, Moench TT, Morgan JB, Zeikus JG (1984) Association of hydrogen metabolism with unitrophic or mixotrophic growth of Methanosarcina barkeri on carbon monoxide. J Bacteriol 158:373–375PubMed PubMedCentral
    Oelgeschläger E, Rother M (2008) Carbon monoxide-dependent energy metabolism in anaerobic bacteria and archaea. Arch Microbiol 190:257–269PubMed CrossRef
    Parshina SN, Sipma J, Nakashimada Y, Henstra AM, Smidt H, Lysenko AM, Lens PNL, Lettinga G, Stams AJM (2005) Desulfotomaculum carboxydivorans sp nov., a novel sulfate-reducing bacterium capable of growth at 100 % CO. Int J Syst Evol Microbiol 55:2159–2165. doi:10.​1099/​ijs.​0.​63780-0 PubMed CrossRef
    Paul D, Austin FW, Arick T, Bridges SM, Burgess SC, Dandass YS, Lawrence ML (2010) Genome sequence of the solvent-producing bacterium Clostridium carboxidivorans strain P7T. J Bacteriol 192:5554–5555. doi:10.​1128/​jb.​00877-10 PubMed PubMedCentral CrossRef
    Ramos AR, Grein F, Oliveira GP, Venceslau SS, Keller KL, Wall JD, Pereira IAC (2015) The FlxABCD-HdrABC proteins correspond to a novel NADH dehydrogenase/heterodisulfide reductase widespread in anaerobic bacteria and involved in ethanol metabolism in Desulfovibrio vulgaris Hildenborough. Environ Microbiol. doi:10.​1111/​1462-2920.​12689
    Rauch R, Hrbek J, Hofbauer H (2014) Biomass gasification for synthesis gas production and applications of the syngas. Wiley Interdiscip Rev: Energy Environ 3:343–362. doi:10.​1002/​wene.​97
    Reed DW, Millstein J, Hartzell PL (2001) H2O2-forming NADH oxidase with diaphorase (cytochrome) activity from Archaeoglobus fulgidus. J Bacteriol 183:7007–7016PubMed PubMedCentral CrossRef
    Richter H, McCarthy K, Nevin KP, Johnson JP, Rotello VM, Lovley DR (2008) Electricity generation by Geobacter sulfurreducens attached to gold electrodes. Langmuir 24:4376–4379PubMed CrossRef
    Rother M, Metcalf WW (2004) Anaerobic growth of Methanosarcina acetivorans C2A on carbon monoxide: an unusual way of life for a methanogenic archaeon. Proc Natl Acad Sci U S A 101:16929–16934. doi:10.​1073/​pnas.​0407486101 PubMed PubMedCentral CrossRef
    Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci U S A 95:5857–5864PubMed PubMedCentral CrossRef
    Scrutton NS, Berry A, Perham RN (1990) Redesign of the coenzyme specificity of a dehydrogenase by protein engineering. Nature 343:38–43PubMed CrossRef
    Seedorf H, Fricke WF, Veith B, Brüggemann H, Liesegang H, Strittmatter A, Miethke M, Buckel W, Hinderberger J, Li F, Hagemeier C, Thauer RK, Gottschalk G (2008) The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features. Proc Natl Acad Sci U S A 105:2128–2133. doi:10.​1073/​pnas.​0711093105 PubMed PubMedCentral CrossRef
    Singer SW, Hirst MB, Ludden PW (2006) CO-dependent H2 evolution by Rhodospirillum rubrum: role of CODH:CooF complex. Biochim Biophys Acta Bioenerg 1757:1582–1591CrossRef
    Sipma J, Henstra AM, Parshina SN, Lens PNL, Lettinga G, Stams AJM (2006) Microbial CO conversions with applications in synthesis gas purification and bio-desulfurization. Crit Rev Biotechnol 26:41–65PubMed CrossRef
    Slobodkina GB, Reysenbach AL, Panteleeva AN, Kostrikina NA, Wagner ID, Bonch-Osmolovskaya EA, Slobodkin AI (2012) Deferrisoma camini gen. nov., sp nov., a moderately thermophilic, dissimilatory iron(III)-reducing bacterium from a deep-sea hydrothermal vent that forms a distinct phylogenetic branch in the Deltaproteobacteria. Int J Syst Evol Microbiol 62:2463–2468. doi:10.​1099/​ijs.​0.​038372-0 PubMed CrossRef
    Sokolova TG, Gonzalez JM, Kostrikina NA, Chernyh NA, Slepova TV, Bonch-Osmolovskaya EA, Robb FT (2004a) Thermosinus carboxydivorans gen. nov., sp nov., a new anaerobic, thermophilic, carbon-monoxide-oxidizing, hydrogenogenic bacterium from a hot pool of Yellowstone National Park. Int J Syst Evol Microbiol 54:2353–2359. doi:10.​1099/​ijs.​0.​63186-0 PubMed CrossRef
    Sokolova TG, Jeanthon C, Kostrikina NA, Chernyh NA, Lebedinsky AV, Stackebrandt E, Bonch-Osmolovskaya EA (2004b) The first evidence of anaerobic CO oxidation coupled with H2 production by a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Extremophiles 8:317–323PubMed CrossRef
    Sokolova TG, Henstra AM, Sipma J, Parshina SN, Stams AJM, Lebedinsky AV (2009) Diversity and ecophysiological features of thermophilic carboxydotrophic anaerobes. FEMS Microbiol Ecol 68:131–141PubMed CrossRef
    Speers AM, Reguera G (2012) Electron donors supporting growth and electroactivity of Geobacter sulfurreducens anode biofilms. Appl Environ Microbiol 78:437–444. doi:10.​1128/​aem.​06782-11 PubMed PubMedCentral CrossRef
    Stams AJM, Vandijk JB, Dijkema C, Plugge CM (1993) Growth of syntrophic propionate-oxidizing bacteria with fumarate in the absence of methanogenic bacteria. Appl Environ Microbiol 59:1114–1119PubMed PubMedCentral
    Stouthamer AG (1979) The search for correlation between theoretical and experimental growth yields. In: Quayle JR (ed) International review of Biochem, microbial Biochem, vol 21. University Park Press, Baltimore, pp 1–47
    Svetlichny VA, Sokolova TG, Gerhardt M, Ringpfeil M, Kostrikina NA, Zavarzin GA (1991) Carboxydothermus hydrogenoformans gen.nov., sp.nov., a CO utilizing thermophilic anaerobic bacterium from hydrothermal environments of Kunashir Island. Syst Appl Microbiol 14:254–260CrossRef
    Taboada B, Verde C, Merino E (2010) High accuracy operon prediction method based on STRING database scores. Nucleic Acids Res 38(12), e130. doi:10.​1093/​nar/​gkq254 PubMed PubMedCentral CrossRef
    Taboada B, Ciria R, Martinez-Guerrero CE, Merino E (2012) ProOpDB: prokaryotic operon DataBase. Nucleic Acids Res 40:D627–D631. doi:10.​1093/​nar/​gkr1020 PubMed PubMedCentral CrossRef
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi:10.​1093/​molbev/​msr121 PubMed PubMedCentral CrossRef
    Tanner RS, Miller LM, Yang D (1993) Clostridium ljungdahlii sp nov., an acetogenic species in Clostridial ribosomal RNA homology group I. Int J Syst Bacteriol 43:232–236PubMed CrossRef
    Techtmann SM, Colman AS, Robb FT (2009) “That which does not kill us only makes us stronger”: the role of carbon monoxide in thermophilic microbial consortia. Environ Microbiol 11:1027–1037PubMed CrossRef
    Wang SN, Huang HY, Moll J, Thauer RK (2010) NADP(+) reduction with reduced ferredoxin and NADP(+) reduction with NADH are coupled via an electron-bifurcating enzyme complex in Clostridium kluyveri. J Bacteriol 192:5115–5123. doi:10.​1128/​jb.​00612-10 PubMed PubMedCentral CrossRef
    Watt RK, Ludden PW (1999) Ni2+ transport and accumulation in Rhodospirillum rubrum. J Bacteriol 181:4554–4560PubMed PubMedCentral
    Widdel F, Bak F (1992) Gram-negative mesophilic sulfate-reducing bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes. Springer, New York, pp 3352–3378CrossRef
    Wolin EA, Wolin MJ, Wolfe RS (1963) Formation of methane by bacterial extracts. J Biol Chem 238:2882–2886PubMed
    Wu M, Ren QH, Durkin AS, Daugherty SC, Brinkac LM, Dodson RJ, Madupu R, Sullivan SA, Kolonay JF, Nelson WC, Tallon LJ, Jones KM, Ulrich LE, Gonzalez JM, Zhulin IB, Robb FT, Eisen JA (2005) Life in hot carbon monoxide: the complete genome sequence of Carboxydothermus hydrogenoformans Z-2901. PLoS Genet 1:563–574CrossRef
    Yang XQ, Ma KS (2007) Characterization of an exceedingly active NADH oxidase from the anaerobic hyperthermophilic bacterium Thermotoga maritima. J Bacteriol 189:3312–3317PubMed PubMedCentral CrossRef
    Yang TH, Coppi MV, Lovley DR, Sun J (2010) Metabolic response of Geobacter sulfurreducens towards electron donor/acceptor variation. Microb Cell Fact 9:90. doi:10.​1186/​1475-2859-9-90 , 15 pp PubMed PubMedCentral CrossRef
  • 作者单位:Jeanine S. Geelhoed (1) (2)
    Anne M. Henstra (1) (3)
    Alfons J. M. Stams (1)

    1. Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB, Wageningen, The Netherlands
    2. NIOZ Royal Netherlands Institute for Sea Research, Korringaweg 7, 4401 NT, Yerseke, The Netherlands
    3. Centre for Biomolecular Sciences, University of Nottingham, University Park, NG7 2EF, Nottingham, UK
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Microbiology
    Microbial Genetics and Genomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0614
文摘
This study shows that Geobacter sulfurreducens grows on carbon monoxide (CO) as electron donor with fumarate as electron acceptor. Geobacter sulfurreducens was tolerant to high CO levels, with up to 150 kPa in the headspace tested. During growth, hydrogen was detected in very slight amounts (∼5 Pa). In assays with cell-free extract of cells grown with CO and fumarate, production of hydrogen from CO was not observed, and hydrogenase activity with benzyl viologen as electron acceptor was very low. Taken together, this suggested that CO is not utilized via hydrogen as intermediate. In the presence of CO, reduction of NADP+ was observed at a rate comparable to CO oxidation coupled to fumarate reduction in vivo. The G. sulfurreducens genome contains a single putative carbon monoxide dehydrogenase-encoding gene. The gene is part of a predicted operon also comprising a putative Fe–S cluster-binding subunit (CooF) and a FAD–NAD(P) oxidoreductase and is preceded by a putative CO-sensing transcription factor. This cluster may be involved in a novel pathway for CO oxidation, but further studies are necessary to ascertain this. Similar gene clusters are present in several other species belonging to the Deltaproteobacteria and Firmicutes, for which CO utilization is currently not known. Keywords Carbon monoxide Fumarate reduction Geobacter sulfurreducens Carboxydotrophic growth Microbial metabolism

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700