用户名: 密码: 验证码:
Double Transgenesis of Humanized fat1 and fat2 Genes Promotes Omega-3 Polyunsaturated Fatty Acids Synthesis in a Zebrafish Model
详细信息    查看全文
  • 作者:Shao-Chen Pang (1) (4)
    Hou-Peng Wang (1)
    Kuo-Yu Li (1)
    Zuo-Yan Zhu (1)
    Jing X. Kang (2) (3)
    Yong-Hua Sun (1)
  • 关键词:Omega ; 3 fatty acids ; Omega ; 6 fatty acids ; Desaturase ; Transgenic fish ; Transcriptional regulation
  • 刊名:Marine Biotechnology
  • 出版年:2014
  • 出版时间:October 2014
  • 年:2014
  • 卷:16
  • 期:5
  • 页码:580-593
  • 全文大小:3,080 KB
  • 参考文献:1. Ahmed AS, Xiong F, Pang SC, He MD, Waters MJ, Zhu ZY, Sun YH (2011) Activation of GH signaling and GH-independent stimulation of growth in zebrafish by introduction of a constitutively activated GHR construct. Transgenic Res 20(3):557鈥?67. doi:10.1007/s11248-010-9439-9 CrossRef
    2. Alimuddin, Yoshizaki G, Kiron V, Satoh S, Takeuchi T (2005) Enhancement of EPA and DHA biosynthesis by over-expression of masu salmon delta6-desaturase-like gene in zebrafish. Transgenic Res 14(2):159鈥?65 CrossRef
    3. Alimuddin, Yoshizaki G, Kiron V, Satoh S, Takeuchi T (2007) Expression of masu salmon delta5-desaturase-like gene elevated EPA and DHA biosynthesis in zebrafish. Mar Biotechnol (NY) 9(1):92鈥?00. doi:10.1007/s10126-006-6003-y CrossRef
    4. Alimuddin, Kiron V, Satoh S, Takeuchi T, Yoshizaki G (2008) Cloning and over-expression of a masu salmon ( / Oncorhynchus masou) fatty acid elongase-like gene in zebrafish. Aquaculture 282(1鈥?):13鈥?8. doi:10.1016/j.aquaculture.2008.06.033 CrossRef
    5. Bousquet M, Gue K, Emond V, Julien P, Kang JX, Cicchetti F, Calon F (2011) Transgenic conversion of omega-6 into omega-3 fatty acids in a mouse model of Parkinson鈥檚 disease. J Lipid Res 52(2):263鈥?71. doi:10.1194/jlr.M011692 CrossRef
    6. Buzzi M, Henderson RJ, Sargent JR (1996) The desaturation and elongation of linolenic acid and eicosapentaenoic acid by hepatocytes and liver microsomes from rainbow trout ( / Oncorhynchus mykiss) fed diets containing fish oil or olive oil. Biochim Biophys Acta 1299(2):235鈥?44 CrossRef
    7. Chen Q, Liu Q, Wu Z, Wang Z, Gou K (2009) Generation of fad2 transgenic mice that produce omega-6 fatty acids. Sci China Ser C Life Sci Chin Acad Sci 52(11):1048鈥?054. doi:10.1007/s11427-009-0143-z CrossRef
    8. Chen Y, Mei M, Zhang P, Ma K, Song G, Ma X, Zhao T, Tang B, Ouyang H, Li G, Li Z (2013) The generation of transgenic mice with fat1 and fad2 genes that have their own polyunsaturated fatty acid biosynthetic pathway. Cell Physiol Biochem 32(3):523鈥?32. doi:10.1159/000354456 CrossRef
    9. Deckelbaum RJ (2010) / n-6 and / n-3 fatty acids and atherosclerosis: ratios or amounts? Arterioscler Thromb Vasc Biol 30(12):2325鈥?326. doi:10.1161/atvbaha.110.214353 CrossRef
    10. Distel M, Wullimann MF, Koster RW (2009) Optimized Gal4 genetics for permanent gene expression mapping in zebrafish. Proc Natl Acad Sci U S A 106(32):13365鈥?3370. doi:10.1073/pnas.0903060106 CrossRef
    11. FAO (2012) The state of world fisheries and aquaculture. FAO
    12. Fritsche K (2006) Fatty acids as modulators of the immune response. Annu Rev Nutr 26(1):45鈥?3. doi:10.1146/annurev.nutr.25.050304.092610 CrossRef
    13. Hastings N, Agaba M, Tocher DR, Leaver MJ, Dick JR, Sargent JR, Teale AJ (2001) A vertebrate fatty acid desaturase with delta 5 and delta 6 activities. Proc Natl Acad Sci U S A 98(25):14304鈥?4309. doi:10.1073/pnas.251516598 CrossRef
    14. Heckman KL, Pease LR (2007) Gene splicing and mutagenesis by PCR-driven overlap extension. Nat Protoc 2(4):924鈥?32. doi:10.1038/nprot.2007.132 CrossRef
    15. Jump DB (2008) / n-3 polyunsaturated fatty acid regulation of hepatic gene transcription. Curr Opin Lipidol 19(3):242鈥?47. doi:10.1097/MOL.0b013e3282ffaf6a CrossRef
    16. Kabeya N, Takeuchi Y, Yamamoto Y, Yazawa R, Haga Y, Satoh S, Yoshizaki G (2014) Modification of the / n-3 HUFA biosynthetic pathway by transgenesis in a marine teleost, nibe croaker. J Biotechnol 172:46鈥?4. doi:10.1016/j.jbiotec.2013.12.004 CrossRef
    17. Kang JX (2007) Fat-1 transgenic mice: a new model for omega-3 research. Prostaglandins Leukot Essent Fat Acids 77(5鈥?):263鈥?67. doi:10.1016/j.plefa.2007.10.010 CrossRef
    18. Kang ZB, Ge Y, Chen Z, Cluette-Brown J, Laposata M, Leaf A, Kang JX (2001) Adenoviral gene transfer of / Caenorhabditis elegans n-3 fatty acid desaturase optimizes fatty acid composition in mammalian cells. Proc Natl Acad Sci U S A 98(7):4050鈥?054. doi:10.1073/pnas.061040198 CrossRef
    19. Kang JX, Wang J, Wu L, Kang ZB (2004) Transgenic mice: Fat-1 mice convert / n-6 to / n-3 fatty acids. Nature 427(6974):504鈥?04 CrossRef
    20. Kawakami K, Takeda H, Kawakami N, Kobayashi M, Matsuda N, Mishina M (2004) A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev Cell 7(1):133鈥?44 CrossRef
    21. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203(3):253鈥?10. doi:10.1002/aja.1002030302 CrossRef
    22. Kris-Etherton PM, Harris WS, Appel LJ, Committee ftN (2003) Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Arterioscler Thromb Vasc Biol 23(2):e20鈥揺30. doi:10.1161/01.atv.0000038493.65177.94 CrossRef
    23. Lai L, Kang JX, Li R, Wang J, Witt WT, Yong HY, Hao Y, Wax DM, Murphy CN, Rieke A, Samuel M, Linville ML, Korte SW, Evans RW, Starzl TE, Prather RS, Dai Y (2006) Generation of cloned transgenic pigs rich in omega-3 fatty acids. Nat Biotechnol 24(4):435鈥?36, http://www.nature.com/nbt/journal/v24/n4/suppinfo/nbt1198_S1.html CrossRef
    24. Lieschke GJ, Currie PD (2007) Animal models of human disease: zebrafish swim into view. Nat Rev Genet 8(5):353鈥?67 CrossRef
    25. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2鈥夆垝鈥壩斘擟T method. Methods 25(4):402鈥?08. doi:10.1006/meth.2001.1262 CrossRef
    26. Marszalek JR, Lodish HF (2005) Docosahexaenoic acid, fatty acid-interacting proteins, and neuronal function: breastmilk and fish are good for you. Annu Rev Cell Dev Biol 21:633鈥?57. doi:10.1146/annurev.cellbio.21.122303.120624 CrossRef
    27. Miller MR, Nichols PD, Carter CG (2008) / n-3 oil sources for use in aquaculture鈥攁lternatives to the unsustainable harvest of wild fish. Nutr Res Rev 21(2):85鈥?6. doi:10.1017/S0954422408102414 CrossRef
    28. Monroig O, Rotllant J, Sanchez E, Cerda-Reverter JM, Tocher DR (2009) Expression of long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis genes during zebrafish / Danio rerio early embryogenesis. Biochim Biophys Acta 1791(11):1093鈥?101. doi:10.1016/j.bbalip.2009.07.002 CrossRef
    29. Monroig 脫, Zheng X, Morais S, Leaver MJ, Taggart JB, Tocher DR (2010) Multiple genes for functional 鈭? fatty acyl desaturases (Fad) in Atlantic salmon ( / Salmo salar L.): gene and cDNA characterization, functional expression, tissue distribution and nutritional regulation. Biochim Biophys Acta (BBA) - Mol Cell Biol Lipids 1801(9):1072鈥?081. doi:10.1016/j.bbalip.2010.04.007 CrossRef
    30. Monroig 脫, Navarro JC, Tocher DR (2011) Long-chain polyunsaturated fatty acids in fish: recent advances on desaturases and elongases involved in their byosinthesis. Avances Nutr Acu铆cola 11:257鈥?83
    31. Morais S, Pratoomyot J, Taggart JB, Bron JE, Guy DR, Bell JG, Tocher DR (2011) Genotype-specific responses in Atlantic salmon ( / Salmo salar) subject to dietary fish oil replacement by vegetable oil: a liver transcriptomic analysis. BMC Genomics 12:255. doi:10.1186/1471-2164-12-255 CrossRef
    32. Morimoto KC, Van Eenennaam AL, DePeters EJ, Medrano JF (2005) Endogenous production of / n-3 and / n-6 fatty acids in mammalian cells. J Dairy Sci 88(3):1142鈥?146 CrossRef
    33. Nakamura MT, Nara TY (2004) Structure, function, and dietary regulation of delta6, delta5, and delta9 desaturases. Annu Rev Nutr 24:345鈥?76. doi:10.1146/annurev.nutr.24.121803.063211 CrossRef
    34. Okuley J, Lightner J, Feldmann K, Yadav N, Lark E, Browse J (1994) Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell Online 6(1):147鈥?58. doi:10.1105/tpc.6.1.147 CrossRef
    35. 脰zogul Y, 脰zogul F, Alagoz S (2007) Fatty acid profiles and fat contents of commercially important seawater and freshwater fish species of Turkey: a comparative study. Food Chem 103(1):217鈥?23. doi:10.1016/j.foodchem.2006.08.009 CrossRef
    36. Pei DS, Sun YH, Chen CH, Chen SP, Wang YP, Hu W, Zhu ZY (2008) Identification and characterization of a novel gene differentially expressed in zebrafish cross-subfamily cloned embryos. BMC Dev Biol 8:29. doi:10.1186/1471-213X-8-29 CrossRef
    37. Peyou-Ndi MM, Watts JL, Browse J (2000) Identification and characterization of an animal delta(12) fatty acid desaturase gene by heterologous expression in / Saccharomyces cerevisiae. Arch Biochem Biophys 376(2):399鈥?08. doi:10.1006/abbi.2000.1733 CrossRef
    38. Ren H-t, Zhang G-q, Li J-l, Tang Y-k, Li H-x, Yu J-h, Xu P (2013) Two 螖6-desaturase-like genes in common carp ( / Cyprinus carpio var. Jian): structure characterization, mRNA expression, temperature and nutritional regulation. Gene 525(1):11鈥?7. doi:10.1016/j.gene.2013.04.073 CrossRef
    39. Rosen ED, Walkey CJ, Puigserver P, Spiegelman BM (2000) Transcriptional regulation of adipogenesis. Genes Dev 14(11):1293鈥?307. doi:10.1101/gad.14.11.1293
    40. Saeki K, Matsumoto K, Kinoshita M, Suzuki I, Tasaka Y, Kano K, Taguchi Y, Mikami K, Hirabayashi M, Kashiwazaki N, Hosoi Y, Murata N, Iritani A (2004) Functional expression of a Delta12 fatty acid desaturase gene from spinach in transgenic pigs. Proc Natl Acad Sci U S A 101(17):6361鈥?366. doi:10.1073/pnas.0308111101 CrossRef
    41. Senadheera SD, Turchini GM, Thanuthong T, Francis DS (2011) Effects of dietary alpha-linolenic acid (18:3 / n-3)/linoleic acid (18:2 / n-6) ratio on fatty acid metabolism in Murray cod ( / Maccullochella peelii peelii). J Agric Food Chem 59(3):1020鈥?030. doi:10.1021/jf104242y CrossRef
    42. Spychalla JP, Kinney AJ, Browse J (1997) Identification of an animal omega-3 fatty acid desaturase by heterologous expression in / Arabidopsis. Proc Natl Acad Sci U S A 94(4):1142鈥?147 CrossRef
    43. Stoletov K, Fang L, Choi SH, Hartvigsen K, Hansen LF, Hall C, Pattison J, Juliano J, Miller ER, Almazan F, Crosier P, Witztum JL, Klemke RL, Miller YI (2009) Vascular lipid accumulation, lipoprotein oxidation, and macrophage lipid uptake in hypercholesterolemic zebrafish. Circ Res 104(8):952鈥?60. doi:10.1161/CIRCRESAHA.108.189803 CrossRef
    44. Thanuthong T, Francis DS, Senadheera SP, Jones PL, Turchini GM (2011) LC-PUFA biosynthesis in rainbow trout is substrate limited: use of the whole body fatty acid balance method and different 18:3 / n-3/18:2 / n-6 ratios. Lipids 46(12):1111鈥?127. doi:10.1007/s11745-011-3607-4 CrossRef
    45. Wan JB, Huang LL, Rong R, Tan R, Wang J, Kang JX (2010) Endogenously decreasing tissue / n-6/ / n-3 fatty acid ratio reduces atherosclerotic lesions in apolipoprotein E-deficient mice by inhibiting systemic and vascular inflammation. Arterioscler Thromb Vasc Biol 30(12):2487鈥?494. doi:10.1161/ATVBAHA.110.210054 CrossRef
    46. Wei C-Y, Wang H-P, Zhu Z-Y, Sun Y-H (2014) Transcriptional factors Smad1 and Smad9 act redundantly to mediate zebrafish ventral specification downstream of Smad5. J Biol Chem. doi:10.1074/jbc.M114.549758
    47. Whelan J, Rust C (2006) Innovative dietary sources of / n-3 fatty acids. Annu Rev Nutr 26(1):75鈥?03. doi:10.1146/annurev.nutr.25.050304.092605 CrossRef
    48. Wu X, Ouyang H, Duan B, Pang D, Zhang L, Yuan T, Xue L, Ni D, Cheng L, Dong S, Wei Z, Li L, Yu M, Sun QY, Chen DY, Lai L, Dai Y, Li GP (2012) Production of cloned transgenic cow expressing omega-3 fatty acids. Transgenic Res 21(3):537鈥?43. doi:10.1007/s11248-011-9554-2 CrossRef
    49. Xiong F, Wei ZQ, Zhu ZY, Sun YH (2013) Targeted expression in zebrafish primordial germ cells by Cre/loxP and Gal4/UAS systems. Mar Biotechnol (NY) 15(5):526鈥?39. doi:10.1007/s10126-013-9505-4 CrossRef
    50. Yamashita A, Kawana K, Tomio K, Taguchi A, Isobe Y, Iwamoto R, Masuda K, Furuya H, Nagamatsu T, Nagasaka K, Arimoto T, Oda K, Wada-Hiraike O, Yamashita T, Taketani Y, Kang JX, Kozuma S, Arai H, Arita M, Osuga Y, Fujii T (2013) Increased tissue levels of omega-3 polyunsaturated fatty acids prevents pathological preterm birth. Sci Rep 3:3113. doi:10.1038/srep03113
    51. Zhang P, Zhang Y, Dou H, Yin J, Chen Y, Pang X, Vajta G, Bolund L, Du Y, Ma RZ (2012) Handmade cloned transgenic piglets expressing the nematode fat-1 gene. Cell Reprogram 14(3):258鈥?66. doi:10.1089/cell.2011.0073
    52. Zhang P, Liu P, Dou H, Chen L, Chen L, Lin L, Tan P, Vajta G, Gao J, Du Y, Ma RZ (2013) Handmade cloned transgenic sheep rich in omega-3 fatty acids. PLoS One 8(2):e55941. doi:10.1371/journal.pone.0055941 CrossRef
    53. Zheng X, Tocher DR, Dickson CA, Bell JG, Teale AJ (2004) Effects of diets containing vegetable oil on expression of genes involved in highly unsaturated fatty acid biosynthesis in liver of Atlantic salmon ( / Salmo salar). Aquaculture 236(1鈥?):467鈥?83. doi:10.1016/j.aquaculture.2004.02.003 CrossRef
    54. Zhu ZY, Sun YH (2000) Embryonic and genetic manipulation in fish. Cell Res 10(1):17鈥?7 CrossRef
  • 作者单位:Shao-Chen Pang (1) (4)
    Hou-Peng Wang (1)
    Kuo-Yu Li (1)
    Zuo-Yan Zhu (1)
    Jing X. Kang (2) (3)
    Yong-Hua Sun (1)

    1. State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
    4. University of Chinese Academy of Sciences, Beijing, 100049, China
    2. Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
    3. Harvard Medical School, Boston, MA, USA
  • ISSN:1436-2236
文摘
Omega-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are essential nutrients for human health. However, vertebrates, including humans, have lost the abilities to synthesize EPA and DHA de novo, majorly due to the genetic absence of delta-12 desaturase and omega-3 desaturase genes. Fishes, especially those naturally growing marine fish, are major dietary source of EPA and DHA. Because of the severe decline of marine fishery and the decrease in n-3 LC-PUFA content of farmed fishes, it is highly necessary to develop alternative sources of n-3 LC-PUFA. In the present study, we utilized transgenic technology to generate n-3 LC-PUFA-rich fish by using zebrafish as an animal model. Firstly, fat1 was proved to function efficiently in fish culture cells, which showed an effective conversion of n-6 PUFA to n-3 PUFA with the n-6/n-3 ratio that decreased from 7.7 to 1.1. Secondly, expression of fat1 in transgenic zebrafish increased the 20:5n-3 and 22:6n-3 contents to 1.8- and 2.4-fold, respectively. Third, co-expression of fat2, a fish codon-optimized delta-12 desaturase gene, and fat1 in fish culture cell significantly promoted n-3 PUFA synthesis with the decreased n-6/n-3 ratio from 7.7 to 0.7. Finally, co-expression of fat1 and fat2 in double transgenic zebrafish increased the 20:5n-3 and 22:6n-3 contents to 1.7- and 2.8-fold, respectively. Overall, we generated two types of transgenic zebrafish rich in endogenous n-3 LC-PUFA, fat1 transgenic zebrafish and fat1/fat2 double transgenic zebrafish. Our results demonstrate that application of transgenic technology of humanized fat1 and fat2 in farmed fishes can largely improve the n-3 LC-PUFA production.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700