用户名: 密码: 验证码:
Thermodynamic and kinetic properties of sorbitol-induced molten globule of myoglobin
详细信息    查看全文
  • 作者:Tadashi Kamiyama ; Tomokadu Marutani…
  • 关键词:Molten globule ; Myoglobin ; Sorbitol ; DSC ; Preferential solvation
  • 刊名:Journal of Thermal Analysis and Calorimetry
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:123
  • 期:3
  • 页码:1861-1869
  • 全文大小:772 KB
  • 参考文献:1.Goto Y, Ichimura N, Hamaguchi K. Effects of ammonium sulfate on the unfolding and refolding of the variable and constant fragments of an immunoglobulin light chain. Biochemistry. 1988;27:1670–7.CrossRef
    2.Ashikari Y, Arata Y, Hamaguchi K. pH-induced unfolding of the constant fragment of the immunoglobulin light chain: effect of reduction of the intrachain disulfide bond. J Biochem. 1985;97:517–28.
    3.Baldwin RL. Temperature dependence of the hydrophobic interaction in protein folding. PNAS. 1986;83:8069–72.CrossRef
    4.Vajpai N, Nisius L, Wiktor M, Grzesiek S. High-pressure NMR reveals close similarity between cold and alcohol protein denaturation in ubiquitin. Proc Natl Acad Sci USA. 2013;110:E368–76.CrossRef
    5.Pappenberger G, Saudan C, Becker M, Merbach AE, Kiefhaber T. Denaturant-induced movement of the transition state of protein folding revealed by high-pressure stopped-flow measurements. PNAS. 2000;97:17–22.CrossRef
    6.Kamiyama T, Satoh M, Tateishi T, Nojiri T, Takeushi D, Kimura T. Effects of modified β-Cyclodextrin on thermal stability and conformation of lysozyme. Thermochim Acta. 2012;532:10–4.CrossRef
    7.Kamiyama T, Tanaka T, Satoh M, Kimura T. Destabilization of cytochrome c by modified β-cyclodextrin. J Therm Anal Calorim. 2013;113:1491–6.CrossRef
    8.Ohgushi M, Wada A. `Molten-globule’ state: a compact form of globular proteins with mobile side-chains. FEBS Lett. 1983;164:21–4.CrossRef
    9.Ptitsyn OB. Protein folding: hypotheses and experiments. J Protein Chem. 1987;6:273–93.CrossRef
    10.Neumaier S, Kiefhaber T. Redefining the dry molten globule state of proteins. J Mol Biol. 2014;426:2520–8.CrossRef
    11.Kuwajima K. The molten globule state of alpha-lactalbumin. FASEB J. 1996;10:102–9.
    12.Baldwin RL, Rose GD. Molten globules, entropy-driven conformational change and protein folding. Curr Opin Struct Biol. 2013;23:4–10.CrossRef
    13.Elms PJ, Chodera JD, Bustamante C, Marqusee S. The molten globule state is unusually deformable under mechanical force. Proc Natl Acad Sci USA. 2012;109:3796–801.CrossRef
    14.Prajapati RS, Indu S, Varadarajan R. Identification and thermodynamic characterization of molten globule states of periplasmic binding proteins. Biochemistry. 2007;46:10339–52.CrossRef
    15.Mukaiyama A, Nakamura T, Makabe K, Maki K, Goto Y, Kuwajima K. The molten globule of β2-microglobulin accumulated at pH 4 and its role in protein folding. J Mol Biol. 2013;425:273–91.CrossRef
    16.Goto Y, Nishikori S. Role of electrostatic repulsion in the acidic molten globule. J Mol Biol. 1991;222:679–86.CrossRef
    17.Hagihara Y, Tan Y, Goto Y. Comparison of the conformational stability of the molten globule and native states of horse cytochrome c: effects of acetylation, heat, urea and guanidine-hydrochloride. J Mol Biol. 1994;237:336–48.CrossRef
    18.Kelkar DA, Chaudhuri A, Haldar S, Chattopadhyay A. Exploring tryptophan dynamics in acid-induced molten globule state of bovine alpha-lactalbumin: a wavelength-selective fluorescence approach. Eur Biophys J Biophy. 2010;39:1453–63.CrossRef
    19.Nakamura S, Kidokoro S. Volumetric properties of the molten globule state of cytochrome c on the thermal three-state transition evaluated by pressure perturbation calorimetry. J Phys Chem B. 2012;116:1927–32.CrossRef
    20.Kamiyama T, Sadahide Y, Nogusa Y, Gekko K. Polyol-induced molten globule of cytochrome c: an evidence for stabilization by hydrophobic interaction. Biochim Biophys Acta. 1999;1434:44–57.CrossRef
    21.Jennings PA, Wright PE. Formation of a molten globule intermediate early in the kinetic folding pathway of apomyoglobin. Science. 1993;262:892–6.CrossRef
    22.Uzawa T, Nishimura C, Akiyama S, Ishimori K, Takahashi S, Dyson HJ, Wright PE. Hierarchical folding mechanism of apomyoglobin revealed by ultra-fast H/D exchange coupled with 2D NMR. Proc Natl Acad Sci USA. 2008;105:13859–64.CrossRef
    23.Nishii I, Kataoka M, Goto Y. Cold Denaturation of the molten globule states of apomyoglobin and a profile for protein folding. Biochemistry. 1994;33:4903–9.CrossRef
    24.Nishii I, Kataoka M, Goto Y. Thermodynamic stability of the molten globule states of apomyoglobin. J Mol Biol. 1995;250:223–38.CrossRef
    25.Nishimura C, Dyson HJ, Wright PE. Energetic frustration of apomyoglobin folding: role of the B helix. J Mol Biol. 2010;396:1319–28.CrossRef
    26.Bowen WJ. The absorption spectra and extinction coefficients of myoglobin. J Biol Chem. 1949;179:235–45 (from Sigma Product Information).
    27.Fasman GD, editor. Circular dichroism and the conformational analysis of biomolecules. New York: Plenum Press; 1996.
    28.Pace CN. Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol. 1985;131:267–80.
    29.Ramos CHI, Kay MS, Baldwin RL. Putative interhelix ion pairs involved in the stability of myoglobin. Biochemistry. 1999;38:9783–90.CrossRef
    30.Privalov PL. Stability of proteins small globular proteins. Adv Protein Chem. 1979;33:167–241.
    31.Privalov PL. Stability of proteins: proteins which do not present a single cooperative system. Adv Protein Chem. 1982;35:1–104.CrossRef
    32.Tanford C, Kawahara K, Lapanje S. Proteins as random coils. II. Hydrogen ion titration curve of ribonuclease in 6 M guanidine hydrochloride. J Am Chem Soc. 1967;89:729–36.CrossRef
    33.Gekko K, Timasheff SN. Mechanism of protein stabilization by glycerol: preferential hydration in glycerol-water mixtures. Biochemistry. 1981;20:4667–76.CrossRef
    34.Cohen G, Eisenberg H. Deoxyribonuclease solutions: sedimentation in a density gradient, partial specific volumes, density and refractive index increments, and preferential interactions. Biopolymers. 1968;6:1077–100.CrossRef
    35.Wyman J. Linked functions and reciprocal effects in hemoglobin: a second look. Adv Protein Chem. 1964;19:223–86.CrossRef
    36.Tanford C. Extension of the theory of linked function to incorporate the effects of protein hydration. J Mol Biol. 1969;39:539–44.CrossRef
    37.Timasheff SN, Xie G. Preferential interactions of urea with lysozyme and their linkage to protein denaturation. Biophys Chem. 2003;105:421–48.CrossRef
    38.Konermann L, Rosell FI, Mauk AG, Douglas DJ. Acid-induced denaturation of myoglobin studied by time-resolved electrospray ionization mass spectrometry. Biochemistry. 1997;36:6448–54.CrossRef
    39.Sogbein OO, Simmons DA, Konermann L. Effects of pH on the kinetic reaction mechanism of myoglobin unfolding studied by time-resolved electrospray ionization mass spectrometry. J Am Soc Mass Spectrom. 2000;11:312–9.CrossRef
    40.Hagen SJ. Solvent viscosity and friction in protein folding dynamics. Curr Protein Pept Sci. 2010;11:385–95.CrossRef
    41.Tang X, Pikal MJ. Measurement of the kinetics of protein unfolding in viscous systems and implications for protein stability in freeze-drying. Pharm Res. 2005;22:1176–85.CrossRef
  • 作者单位:Tadashi Kamiyama (1)
    Tomokadu Marutani (1)
    Dai Kato (1)
    Takuya Hamada (1)
    Keiichi Kato (1)
    Takayoshi Kimura (1)

    1. Department of Chemistry, School of Science and Engineering, Kinki University, Kowakae 3-4-1, Higashiōsaka, Osaka, 577-8502, Japan
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Sciences
    Polymer Sciences
    Physical Chemistry
    Inorganic Chemistry
    Measurement Science and Instrumentation
  • 出版者:Akad茅miai Kiad贸, co-published with Springer Science+Business Media B.V., Formerly Kluwer Academic
  • ISSN:1572-8943
文摘
To reveal the contribution of hydrophobic interactions to the stability of the molten globule (MG) state of proteins, the effect of sorbitol on the structure of acid-unfolded (AU) equine heart myoglobin was examined at pH 2 by means of circular dichroism (CD), stopped-flow CD, rheometry, and differential scanning calorimetry. The AU state of myoglobin was refolded by adding sorbitol to the MG state, which had a secondary structure and hydrodynamic volume similar to the native (N) state. The thermal denaturation of the MG state showed considerably small enthalpy change, low cooperativity, and small heat capacity compared to the N state unlike MG state of cytochrome c, indicating that the presence of the heme is important to preserve the strict tertiary structure of MG state not only N state, for heme proteins. The refolding was induced by preferential exclusion of three sorbitol molecules from the AU state compared to the MG state. The transition from the N–MG state kinetically proceeded via the AU state, followed by gradual refolding due to the preferential exclusion of sorbitol with 1.98 × 10−3 s−1 of kinetic constant at 3.3 M sorbitol and 10.9 °C.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700