用户名: 密码: 验证码:
Cadmium Uptake and Translocation of Tomato in Response to Simulated Irrigation Water Containing Elevated Concentrations of Cadmium and Zinc in Clayey Soil
详细信息    查看全文
  • 作者:Mamoun A. Gharaibeh ; Ammar A. Albalasmeh ; Bernd Marschner…
  • 关键词:Cadmium ; Zinc ; Uptake ; Tomato ; Irrigation
  • 刊名:Water, Air, and Soil Pollution
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:227
  • 期:5
  • 全文大小:1,201 KB
  • 参考文献:Adriano, D. C. (1986). Bioavailability of trace metals. In D. C. Adriano (Ed.), Trace elements in the terrestrial environment (pp. 61–89). Berlin: Springer-Verlag.CrossRef
    Alloway, B. J., Jackson, A. P., & Morgan, H. (1990). The zccumulation of cadmium by vegetables grown on soils contaminated from a variety of sources. The Science of the Total Environment, 91, 223–236.CrossRef
    Ayers, R. S., & Westcot, D. W. (1985). Water quality for agriculture (FAO Irrigation and Drainage Paper 29, p. 174). Rome: FAO.
    Baker, A. J. M. (1981). Accumulators and excluders-strategies in the response of plants to heavy metals. Journal of Plant Nutrition, 3, 643–654.CrossRef
    Balen, B., Tkalec, M., Sikić, S., Tolić, S., Cvjetko, P., Pavlica, M., & Vidaković-Cifrek, Z. (2011). Biochemical responses of Lemna minor experimentally exposed to cadmium and zinc. Ecotoxicology, 20(4), 815–26.CrossRef
    Begerow, J., Crößmann, G., Ewers, U., & Finck, M. (2008). Standards and regulations regarding metals and their compounds in environmental materials, drinking water, food, feeding-stuff, consumer products, and other materials. In E. Merian, M. Anke, M. Ihnat, & M. Steoppler (Eds.), Elements and their compounds in the environment (pp. 1498–1524). Weinheim: Wiley-VCH Verlag GmbH.
    Cakmak, I., Welch, R. M., Hart, J., Norvell, W. A., Ozturk, L., & Kochian, L. V. (2000). Uptake and retranslocation of leaf-applied cadmium (Cd-109) in diploid, tetraploid and hexaploid wheats. Journal of Experimental Botany, 51, 221–226.CrossRef
    Chander, K., Hartmann, G., Joergensen, R. G., Khan, K. S., & Lamersdorf, N. (2008). Comparison of three methods for measuring heavy metals in soils contaminated by different sources. Archives of Agronomy and Soil Science, 54, 413–422.CrossRef
    Chaney, R. L., Ryan, J. A., Li, Y. M., & Brown, S. L. (1999). Soil cadmium as a threat to human health. In M. J. McLaughlin & B. R. Singh (Eds.), Cadmium in soils and plants (pp. 219–256). Dordrecht: Kluwer Academic Publishers.CrossRef
    Cherif, J., Mediouni, C., Ammar, W. B., & Jemal, F. (2011). Interactions of zinc and cadmium toxicity in their effects on growth and in antioxidative systems in tomato plants (Solanum lycopersicum). Journal of Environmental Sciences, 23(5), 837–844.CrossRef
    Chojnacka, K., Chojnacki, A., Górecka, H., & Górecki, H. (2005). Bioavailability of heavy metals from polluted soils to plants. Science of the Total Environment, 337(1–3), 175–182.CrossRef
    Cui, Y. J., Zhu, Y. G., Zhai, R. H., Chen, D. Y., Huang, Y. Z., Qui, Y., & Liang, J. Z. (2004). Transfer of metals from soil to vegetables in an area near a smelter in Nanning, China. Environmental International, 30(6), 785–791.CrossRef
    Devi, M., Thomas, D. A., Barber, J. T., & Fingerman, M. (1996). Accumulation and physiological and biochemical effects of cadmium in a simple aquatic food chain. Ecotoxicology and Environmental Safety, 33(1), 38–43.CrossRef
    Dong, J., Wu, F. B., & Zhang, G. P. (2006). Influence of cadmium on antioxidant capacity and four microelement concentrations in tomato seedlings (Lycopersicon Esculentum). Chemosphere, 64, 1659–1666.CrossRef
    Duarte, B., Delgado, M., & Caçador, I. (2007). The role of citric acid in cadmium and nickel uptake and translocation, in Halimione portulacoides. Chemosphere, 69, 836–840.CrossRef
    FAO/WHO (2001). Codex Alimentarius Commission Food Additives and Contaminants. Joint FAO/WHO Food Standards Program, ALINORM 01/12A:1–289.
    Gallego, S. M., Pena, L. B., Barcia, R. A., Azpilicueta, C. A., Iannone, M. F., Rosales, E. P., Zawoznik, M. S., Groppa, M. D., & Benavides, M. P. (2012). Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environmental and Experimental Botany, 83, 33–46.CrossRef
    Gee, G. W., & Or, D. (2002). Particle-size analysis. In J. H. Dane & C. G. Topp (Eds.), Methods of soil analysis: part 4—physical methods (pp. 255–293). Madison: ASA and SSSA.
    Grant, C. A., & Bailey, L. D. (1997). Effects of phosphorous and zinc fertilizer management on cadmium accumulation in flaxseed. Journal of the Science of Food and Agriculture, 73, 307–314.CrossRef
    Hall, J. L. (2002). Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany, 53(366), 1–11.CrossRef
    Hart, J. J., Welch, R. M., Norvell, W. A., & Kochian, L. V. (2002). Transport interactions between cadmium and zinc in roots of bread and durum wheat seedlings. Physiologia Plantarum, 116, 73–78.CrossRef
    Hassan, M. J., Zhang, G., Wu, F., Wei, K., & Chonghua, C. (2005). Zinc alleviates growth inhibition and oxidative stress caused by cadmium toxicity in rice. Journal of Plant Nutrition and Soil Science, 168, 256–261.CrossRef
    Jinadasa, K., Milham, C., Hawkins, P., Cornish, P., Williams, Kaldor, C., & Conroy, J. (1997). Survey of cadmium levels in vegetables and soils of Greater Sydney. Australian Journal of Environment, 26, 924–933.
    Kabata-Pendias, A., & Mukherjee, A. B. (2007). Trace elements of group 12 (Previously group IIb). In A. Kabata-Pendias, & A. B. Mukherjee (Eds.). Trace elements from soil to human (pp. 283-319). Springer Berlin Heidelberg.
    Kim, S. J., Chang, A. C., & Page, A. L. (1988). Relative concentration of cadmium and zinc in tissue of selected food crops grown on sludge treated soil. Journal of Environmental Quality, 17, 568–573.CrossRef
    Larbi, A., Morales, F., Abadda, A., Gogorcena, Y., Lucena, J. J., & Abadda, J. (2002). Effects of Cd and Pb in sugar beet plants grown in nutrient solution: induced Fe deficiency and growth inhibition. Functional Plant Biology, 29, 1453–1464.CrossRef
    Li, S. L., Wang, H. X., & Wu, Y. S. (1990). Antagonistic effect of zinc on cadmium in water hyacinth. Acta Scientiae Circumstantiae, 10, 244–249.
    Liu, J., Li, K. Q., Xu, J. K., Liang, J. S., Lu, X. L., Yang, J. C., & Zhu, Q. S. (2003). Interaction of Cd and five mineral nutrients for uptake and accumulation in different rice cultivars and genotypes. Field Crops Research, 83, 271–281.CrossRef
    Liu, J., Qian, M., Cai, G., Yang, J., & Zhu, Q. (2007). Uptake and translocation of Cd in different rice cultivars and the relation with Cd accumulation in rice grain. Journal of Hazardous Materials, 143, 443–447.CrossRef
    Loeppert, R. H., & Suarez, D. L. (1996). Carbonate and gypsum. In D. L. Sparks, A. L. Page, P. A. Helmke, & R. H. Loeppert (Eds.), Methods of soil analysis: part 3—chemical methods (pp. 437–474). Madison: ASA and SSSA.
    Long, X. X., Yang, X. E., Ni, W. Z., Ye, Z. Q., He, Z. L., Calvert, D. V., & Stoffela, J. P. (2003). Assesing zinc thresholds for phytotoxic and potential dietary toxicity in selected vegetable crops. Communications in Soil Science and Plant Analysis, 34, 1421–1434.CrossRef
    López-Millán, A.-F., Sagardoy, R., Solanas, M., Abadía, A., & Abadía, J. (2009). Cadmium toxicity in tomato (Lycopersicon esculentum) plants grown in hydroponics. Environmental and Experimental Botany, 65, 376–385.CrossRef
    Lozano Rodriguez, E., Hernandez, L. E., Bonay, P., & CarpenaRuiz, R. O. (1997). Distribution of cadmium in shoot and root tissues of maize and pea plants: Physiological disturbances. Journal of Experimental Botany, 48, 123–128.CrossRef
    Lund, L. J., Betty, E. E., Page, A. L., & Elliott, R. A. (1981). Occurrence of naturally high cadmium levels in soils and its accumulation by vegetation. Journal of Environmental Quality, 10, 551–556.CrossRef
    Marschner, H. (1995). Mineral nutrition of higher plants (2nd ed., p. 889). London: Academic Press.
    McKenna, I. M., Chaney, R. L., & Williams, F. M. (1993). The effects of cadmium and zinc interactions on the accumulation and tissue distribution of zinc and cadmium in lettuce and spinach. Environment Pollution, 79, 113–120.CrossRef
    Mohammad, A., & Moheman, A. (2010). The effects of cadmium and zinc interactions on the accumulation and tissue distribution of cadmium and zinc in tomato (Lycopersicon esculentum Mill.). Archives of Agronomy and Soil Science, 56, 551–561.CrossRef
    Moreno-Caselles, J., Moral, R., Perez-Espinosa, A., & Perez-Murcia, M. D. (2000). Cadmium accumulation and distribution in cucumber plant. Journal of Plant Nutrition, 23, 250–243.CrossRef
    Nan, Z., Li, J., Zhang, J., & Cheng, G. (2002). Cadmium and zinc interactions and their transfer in soil crop system under actual field conditions. Science of the Total Environment, 285, 187–195.CrossRef
    Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. In D. L. Sparks, A. L. Page, P. A. Helmke, & R. H. Loeppert (Eds.), Methods of soil analysis: part 3—chemical methods (pp. 961–1010). Madison: ASA and SSSA.
    Pallavi, S., & Shanker, D. R. (2005). Cadmium toxicity in plants. Brazilian Journal of Plant Physiology, 17(1), 21–34.
    Peralta-Videa, J. R., Gardea-Torresday, J. L., Gomez, E., Tiemann, K. J., Parsons, J. G., & Carrillo, G. (2002). Effect of mixed cadmium, copper, nickel, and zinc at different pHs upon alfalfa growth and heavy metal uptake. Environmental Pollution, 119, 291–301.CrossRef
    Piotrowska, M., Dudka, S., & Chilopecka, A. (1994). Effect of elevated concentrations of Cd and Zn in soil on spring wheat yield and metal contents of plants. Water Air Soil Pollution, 76, 333–341.CrossRef
    Rauser, W. E. (1986). The amount of cadmium associated with Cd-binding protein in roots of Agrostis gigantea, maize and tomato. Plant Science, 43, 85–91.CrossRef
    Rhoades, J. D. (1996). Salinity: electrical conductivity and total dissolved solids. In D. L. Sparks, A. L. Page, P. A. Helmke, & R. H. Loeppert (Eds.), Methods of soil analysis: part 3—chemical methods (pp. 417–435). Madison: ASA and SSSA.
    Shang, Z. R., & Leung, J. K. (2003). 110mAg root and foliar uptake in vegetables and its migration in soil. Journal of Environmental Radioactivity, 65, 297–307.CrossRef
    Sheppard, M. I., & Sheppard, S. C. (1985). The plant concentration concept as applied to natural uranium. Health Physics, 48, 494–500.
    Simmons, R. W., Pongsakul, P., Chaney, R. L., Saiyasitpanich, D., Klinphoklap, S., & Nobuntou, W. (2003). The relative exclusion of zinc and iron from rice grain in relation to rice grain cadmium as compared to soybean: implications for human health. Plant and Soil, 257, 163–170.CrossRef
    Sinha, S., Gupta, A. K., Bhatt, k., Pandey, K., Rai, U. N., & Singh, K. P. (2006). Distribution of metals in the edible plants grown at Jajmau, Kanpur (India) receiving treated tannery wastewater: relation with physicochemical properties of the soil. Environmental Monitoring and Assessment, 115, 1–22.CrossRef
    Streit, B., & Stumm, W. (1993). Chemical properties of metals and the process of bioaccumulation in terrestrial plants. In B. Market (Ed.), Plants as bio-monoitors: indicators for heavy metals in terrestrial environment (pp. 31–62). Weinheim: VCH.
    Sumner, M. E., & Miller, W. P. (1996). Cation exchange capacity and exchange coefficients. In D. L. Sparks, A. L. Page, P. A. Helmke, & R. H. Loeppert (Eds.), Methods of soil analysis: part 3—chemical methods (pp. 1201–1229). Madison: ASA and SSSA.
    Takijima, Y., & Katsumi, F. (1973). Cadmium contamination of soils and rice plants caused by zinc mining. l. Production of high-cadmium rice on the paddy fields in lower reaches of the mine station. Soil Science and Plant Nutrition, 19, 29–38.CrossRef
    Thomas, G. W. (1996). Soil pH and soil scidity. In D. L. Sparks, A. L. Page, P. A. Helmke, & R. H. Loeppert (Eds.), Methods of soil analysis: part 3—chemical methods (pp. 475–490). Madison: ASA and SSSA.
    Waisberg, M., Joseph, P., Hale, B., & Beyersmann, D. (2003). Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology, 192, 95–117.CrossRef
    Wang, C., Zhang, S. H., Wang, P. F., Hou, J., Zhang, W. J., Li, W., & Lin, Z. P. (2009). The effect of excess Zn on mineral nutrition and antioxidative response in rapeseed seedlings. Chemosphere, 75(11), 1468–1476.CrossRef
    Wu, F., & Zhang, G. (2002). Alleviation of cadmium-toxicity by application of zinc and ascorbic acid in barley. Journal of Plant Nutrition, 25, 2745–2761.CrossRef
    Yang, H., Wong, J. W., Yang, Z. M., & Zhou, L. X. (2001). Ability of Agrogyron elongatum to accumulate the single metal of cadmium, copper, nickel and lead and root exudation of organic acids. Journal of Environmental Science (China), 13, 368–375.
  • 作者单位:Mamoun A. Gharaibeh (1)
    Ammar A. Albalasmeh (1)
    Bernd Marschner (2)
    Yasmeen Saleem (1)

    1. Department of Natural Resources and the Environment, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
    2. Department of Soil Science/Soil Ecology, Institute of Geography, Ruhr-University Bochum, Bochum, Germany
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Atmospheric Protection, Air Quality Control and Air Pollution
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
    Terrestrial Pollution
    Hydrogeology
  • 出版者:Springer Netherlands
  • ISSN:1573-2932
文摘
Accumulation of metals in cultivated crops is considered one of the primary constraints to irrigated agriculture. A greenhouse pot experiment was carried out to study the effects of irrigation with elevated cadmium (Cd) and a combination of cadmium and zinc (Zn) levels on Cd uptake, translocation, and productivity of tomato (Solanum lycopersicum) plants. Tomato seedlings were grown in 3-kg pots irrigated for three months until maturity. Treatments were as follows: pots irrigated with fresh water containing Cd concentrations (0, 0.01, 0.04, 0.16, 0.64, 2.54 mg L−1), and pots irrigated with a combination of Cd + Zn concentrations (0 + 0, 0.01 + 2, 0.04 + 8, 0.16 + 32, 0.64 + 128, and 2.56 + 256 mg L−1). Cadmium and Zn concentration in soil and plant parts (root, shoot, and fruit) increased with increasing metal dose in irrigation water. Results also showed that Cd accumulation in the fruit was much lower than in the shoot indicating lower Cd transfer from soil to the fruit. Tomato biomass was not affected by treatments even at the highest metal dose. The uptake of Cd in tomato fruit ranged from 0.5 to 2.0 and from 0.3 to 1 mg kg−1, in single and combination treatments, respectively. Cadmium in fruit exceeded the permissible limit at 0.04 and 0.16 + 32 mg L−1 in Cd and Cd + Zn treatments, respectively. Therefore these levels could be considered as a threshold for tomato cultivation in clayey soil.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700