用户名: 密码: 验证码:
Motion sickness in lower vertebrates: Studies in weightlessness and under normal conditions
详细信息    查看全文
  • 作者:D. V. Lychakov (1)
  • 关键词:motion sickness ; weightlessness ; microgravitation ; lower vertebrates ; synthetic hypothesis of motion sickness
  • 刊名:Journal of Evolutionary Biochemistry and Physiology
  • 出版年:2012
  • 出版时间:6 - September 2012
  • 年:2012
  • 卷:48
  • 期:5
  • 页码:574-595
  • 全文大小:487KB
  • 参考文献:1. Golding, J.F., Motion Sickness Susceptibility, / Autonom. Neurosci.: Basic and Clinical, 2006, vol. 129, pp. 67-6. CrossRef
    2. Money, K.E., Motion Sickness, / Physiol. Rev., 1970, vol. 50, pp. 1-9.
    3. Shupak, A. and Gordon, C.R., Motion Sickness: Advances in Pathogenesis, Prediction, Prevention, and Treatment, / Aviat. Space Envir. Med., 2006, vol. 77, pp. 1213-223.
    4. Yates, B.J., Miller, A.D., and Lucot, J.B., Physiological Basis and Pharmacology of Motion Sickness: an Update, / Brain Res. Bull., 1998, vol. 47, pp. 395-06. CrossRef
    5. Brizzee, K.R. and Igarashi, M., Effect of Macular Ablation on Frequency and Latency of Motion-Induced Emesis in the Squirrel Monkey, / Aviat. Space Envir. Med., 1986, vol. 57, pp. 1066-070.
    6. Cheung, B.S.K., Howard, I.P., and Money, K.E., Visual-Induced Sickness in Normal and Bilaterally Labyrinthine-Defective Subjects, / Aviat. Space Envir. Med., 1991, vol. 62, pp. 527-31.
    7. Money, K.E. and Friedberg, J., The Role of the Semicircular Canals in Causation of Motion Sickness and Nystagmus in the Dog, / Can. J. Physiol. Pharmacol., 1964, vol. 42, pp. 793-00. CrossRef
    8. Yegorov, A.D. and Yuganov, E.N., Labyrinthine and Extralabyrinthine Mechanisms of Motion Sickness Development under Conditions of Weightlessness, / Kosm. Biol., 1985, vol. 19, pp. 4-1.
    9. Matsnev, E.I., Yakovleva, I.Y., Tarasov, I.K., Alekseev, V.N., Kornilova, L.N., Mateev, A.D., and Gorgiladze, G.I., Space Motion Sickness: Phenomenology, Countermeasures, and Mechanisms, / Aviat. Space Environ. Med., 1983, vol. 54, pp. 312-17.
    10. Newberg, A.B., Changes in the Central Nervous System and Their Clinical Correlates during Long-Term Spaceflight, / Aviat. Space Environ. Med., 1994, vol. 65, pp. 562-72.
    11. Oman, C.M., Lichtenberg, B.K., Money, K.E., and McCoy, R.K., MIT/Canadian Vestibular Experiments on the Spacelab-1 Mission: 4. Space Motion Sickness: Symptoms, Stimuli, and Predictability, / Exp. Brain Res., 1986, vol. 64, pp. 316-34. CrossRef
    12. Anken, R.H., Kappel, T., and Rahmann, H., Morphometry of Fish Inner Ear Otoliths after Development at 3 g Hypergravity, / Acta Otolaryngol. (Stockh.), 1998, vol. 118, pp. 534-39. CrossRef
    13. Edelmann, E., Function-Morphological Investigations of Fish Inner Ear Otoliths as Basis for Interpretation of Human Space Sickness, Respectively, / Acta Astronaut., 2002, vol. 50, pp. 261-66. CrossRef
    14. Helling, K., Hausmann, S., Clarke, A., and Scherer, H., Experimentally Induced Motion Sickness in Fish: Possible Role of the Otolith Organs, / Acta Otolaryngol. (Stockh.), 2003, vol. 123, pp. 488-92. CrossRef
    15. Hilbig, R., Anken, R.H., Bauerle, A., and Rahmann, H., Susceptibility to Motion Sickness in Fish: a Parabolic Aircraft Flight Study, / J. Gravit. Physiol., 2002, vol. 9, pp. 29-0.
    16. Mori, S., Mitarai, G., Takabayashi, A., Usui, S., Sakakibara, M., Nagatomo, M., and von Baumgarten, R.J., Evidence of Sensory Conflict and Recovery in Carp Exposed to Prolonged Weightlessness, / Aviat. Space Environ. Med., 1996, vol. 67, pp. 256-61.
    17. Naitoh, T., Yamashita, M., Izumi-Kurotani, A., Takabatake, I., and Wassersug, R.J., Emesis and Space Motion Sickness in Amphibians, / Adv. Space Res., 2000, vol. 25, pp. 2015-018. CrossRef
    18. Naitoh, T., Wassersug, R.J., and Yamashita, M., Factors Influencing the Susceptibility of Anurans to Motion Sickness, / J. Comp. Physiol. A., 2001, vol. 187, pp. 105-13. CrossRef
    19. Rahmann, H. and Anken, R.H., Gravitational Biology Using Fish as Model Systems for Understanding Motion Sickness Susceptibility, / J. Gravit. Physiol., 2002, vol. 9, pp. 19-0.
    20. Takabayashi, A. and Ohmura-Iwasaki, T., Functional Asymmetry Estimated by Measurements of Otolith in Fish, / Biol. Sci. Space, 2003, vol. 17, pp. 293-97. CrossRef
    21. Wassersug, R.J., Izumi-Kurotani, A., Yamashita, M., and Naitoh, T., Motion Sickness in Amphibians, / Behav. Neural. Biol., 1993, vol. 60, pp. 42-1. CrossRef
    22. Parker, D.E., The Vestibular Apparatus, / Sci. Amer., 1980, vol. 243, no. 5, pp. 118-35. CrossRef
    23. Treisman, M., Motion Sickness: an Evolutionary Hypothesis, / Science, 1977, vol. 197, pp. 493-95. CrossRef
    24. Golovanov, Ya.K., / Korolev. Fakty i mify (Korolev. Facts and Myths), Moscow, 1994.
    25. Gorgiladze, G.I. and Shipov, A.A., Biological Experiments in Weightlessness. The Vestibular Function, / Aviakosm. Ekolog. Med., 1994, vol. 28, pp. 4-1.
    26. Lychakov, D.V., Structure of Vestibular Receptor Organs and Animal Behavior under Conditions of Weightlessness, / Zh. Evol. Biokhim. Fiziol., 1998, vol. 34, pp. 243-57.
    27. Andrews, P.L.R., Axelsson, M., Franklin, C., and Holmgren, S., The Emetic Reflex in a Reptile ( / Crocodylus porosus), / J. Exp. Biol., 2000, vol. 203, pp. 1625-632.
    28. Brunnschweiler, J.M., Andrews, P.L.R., Southall, E.J., Pickering, M., and Sims, D.W., Rapid Voluntary Stomach Eversion in a Free-Living Shark, / J. Marin. Biol. Assoc. UK, 2005, vol. 85, pp. 1141-144. CrossRef
    29. Naitoh, T., Wassersug, R.J., and Leslie, R.A., The Physiology, Morphology and Ontogeny of Emetic Behavior in Anuran Amphibians, / Physiol. Zool., 1989, vol. 62, pp. 819-43.
    30. Sims, D.W., Andrews, P.L.R., and Young, J.Z., Sto mach Rinsing in Rays, / Nature, 2000, vol. 404, p. 566. CrossRef
    31. Tiersch, T.R. and Griffith, J.S., Apomorphine-Induced Vomiting in Rainbow Trout ( / Salmo gairdneri), / Comp. Biochem. Physiol. A., 1988, vol. 91, pp. 721-25. CrossRef
    32. Mori, S., Disorientation of Animals in Microgravity, / Nagoya J. Med. Sci., 1995, vol. 58, pp. 71-1.
    33. Lackner, J.R. and Graybiel, A., Head Movements in Non-Terrestrial Force Environments Elicit Motion Sickness: Implications for the Etiology of Space Motion Sickness, / Aviat. Space Environ. Med., 1986, vol. 57, pp. 443-48.
    34. Lackner, J.R. and Graybiel, A., Head Movements in Low and High Gravitoinertial Force Environments Elicit Motion Sickness: Implications for Space Motion Sickness, / Aviat. Space Environ. Med., 1987, vol. 58, pp. 212-17.
    35. Lackner, J.R. and Graybiel, A., Altered Sensorimotor Control of the Body as an Etiological Factor in Space Motion Sickness, / Aviat. Space Environ. Med., 1991, vol. 62, pp. 765-71.
    36. Larsen, L.O., Feeding and Digestion, / Environmental Physiology of the Amphibians, Feder, M.E. and Burggren, W.W., Eds., University of Chicago Press, 1992, pp. 378-94.
    37. Naya, D.E. and Bozinovic, F., Digestive Phenotypic Flexibility in Post-Metamorphic Amphibians: Studies on a Model Organism, / Biol. Res., 2004, vol. 37, pp. 365-70. CrossRef
    38. Lychakov, D.V., Behavior of Trout Fry / Salmo gairdneri during Swinging, / Zh. Evol. Biokhim. Fiziol., 2007, vol. 43, pp. 198-07.
    39. Lychakov, D.V., Motion Sickness: Results and Future Prospects, / XIV Mezhdunarodnoe soveshchanie i VII Shkola po Evolyutsionnoi Fizioiogii (XIX International Conference and VII School on Evolutionary Physiology), St. Petersburg, 2011, p. 121.
    40. Lychakov, D.V. and Diomidov, M.N., Study of Motion Sickness in the Fish Guppy / Poecilia reticulata. Development of Method, / Zh. Evol. Biokhim. Fiziol., 1999, vol. 35, pp. 625-37.
    41. Graybiel, A. and Knepton, J., Sopite Syndrome: a Sometimes Sole Manifestation of Motion Sickness, / Aviat. Space Environ. Med., 1976, vol. 47, pp. 873-82.
    42. Ordy, J.M. and Brizzee, K.R., Motion Sickness in the Squirrel Monkey, / Aviat. Space Environ. Med., 1980, vol. 51, pp. 215-23.
    43. Adriaenssens, B., Individual Variation in Behaviour. Personality and Performance of Brown Trout in the Wild: / Thesis for the Degree of Doctor of Philosophy, Gothenburg, Sweden, 2010.
    44. ?verli, ?., Pottinger, T.G., Carrick, T.R., ?verli, E., and Winberg, S., Differences in Behaviour between Rainbow Trout Selected for High- and Low-Stress Responsiveness, / J. Exp. Biol., 2002, vol. 205, pp. 391-95.
    45. ?verli, ?., Winberg, S., and Pottinger, T.G., Behavioral and Neuroendocrine Correlates of Selection for Stress Responsiveness in Rainbow Trout- a Review, / Integr. Comp. Biol., 2005, vol. 45, pp. 463-74. CrossRef
    46. Pavlov, D.S., / Optomotornaya reaktsiya i osobennosti orientatsii ryb v potoke vody (Optomotor Reaction and Peculiarities of Fish Orientation in a Water Flow), Moscow, 1970.
    47. Lychakov, D.V., Behavior of Toads, / Bufo bufo, in a Dynamic Environment, / J. Vestibular Res., 2009, vol. 19, pp. 69-2.
    48. Lowry, C.A. and Moore, F.L., Corticotropin-Releasing Factor (CRF) Antagonist Suppresses Stress-Induced Locomotor Activity in an Amphibian, / Hormones Behavol., 1991, vol. 25, pp. 84-6. CrossRef
    49. Lychakov, D.V., / Head Oscillations of Adult Toad, http://www.youtube.com/watch?v=IVnAD94oRgI 2011.
    50. Levine, R.P., Monroy, J.A., and Brainerd, E.L., Contribution of Eye Retraction to Swallowing Performance in the Northern Leopard Frog, / Rana pipiens, / J. Exp. Biol., 2004, vol. 207, pp. 1361-368. CrossRef
    51. Carr, J.A., Brown, C.L., Mansouri, R., Venkatesan, S., Neuropeptides, and Amphibian Prey-Catching Behavior, / Comp. Biochem. Physiol. B., 2002, vol. 132, pp. 151-62. CrossRef
    52. Crampton, G.H. and Lucot, J.B., A Stimulator for Laboratory Studies of Motion Sickness in Cats, / Aviat. Space. Environ. Med., 1985, vol. 56, pp. 462-65.
    53. Benson, A.J., / Motion Sickness, Vertigo, Dix, M.R. and Hood, J.D., Eds., Chichester, England, 1984, pp. 391-25.
    54. Lychakov, D.V., Motion Sickness: the Resonance Hypothesis, / Uspekhi Fiziol. Nauk, 1990, vol. 21, pp. 125-28.
    55. Takahashi, M., Saito, A., Okada, Y., Takei, Y., Tomizawa, I., Uyama, K., and Kanzaki, J., Locomotion and Motion Sickness during Horizontally and Vertically Reversed Vision, / Aviat. Space Environ. Med., 1991, vol. 62, pp. 136-40.
    56. Norfleet, W.T., Coats, A.C., and Powell, M.R., Inverted Immersion as a Novel Gravitoinertial Environment, / Aviat. Space Environ. Med., 1995, vol. 66, pp. 825-28.
    57. Golding, J.F., Mueller, A.G., and Gresty, M.A., A Motion Sickness Maximum around 0.2 Hz Frequency Range of Horizontal Translational Oscillation, / Aviat. Space Environ. Med., 2001, vol. 72, pp. 188-92.
    58. Johnson, W.H. and Taylor, N.B.G., Some Experiments on the Relative Effectiveness of Various Types of Accelerations, / Aerospace Med., 1961, vol. 32, pp. 205-08.
    59. O’Hanlon, J.F. and McCauley, M.E., Motion Sickness Incidence as a Function of the Frequency of Acceleration of Vertical Sinusoidal Motion, / Aerospace Med., 1974, vol. 45, pp. 366-69.
    60. Hutchinson, J.R., Schwerda, D., Famini, D.J., Dale, R.H.I., Fischer, M.S., and Kram, R., The Locomotor Kinematics of Asian and African Elephants: Changes with Speed and Size, / J. Exp. Biol., 2006, vol. 209, pp. 3812-827. CrossRef
    61. Bensel, C.K. and Dzendolet, E., Power Spectral Density Analysis of the Standing Sway of Males, / Percept. Psychophys. 1968, vol. 4, pp. 285-88. CrossRef
    62. Kejonen, P., Body Movements during Postural Stabilization. Measurements with a Motion Analysis System, / Academic Dissertation, University of Oulu, Finland, 2002.
    63. Berridge, M.J. and Galione, A., Cytosolic Calcium Oscillations, / FASEB J., 1988, vol. 2, pp. 3074-082.
    64. Lee, J.A., Laurance, A.W., and Boothby, G., Calcium Antagonists in the Prevention of Motion Sickness, / Aviat. Space Environ. Med., 1986, vol. 57, pp. 45-8.
    65. Chelen, W.E., Kabrisky, M., and Rogers, S.K., Spectral Analysis of the Electroencephalographic Response to Motion Sickness, / Aviat. Space Environ. Med., 1993, vol. 64, pp. 24-9.
    66. Hu, S., McChesney, K.A., Player, K.A., Bahl, A.M., Buchanan, J.B., and Scozzafava, J.E., Systematic Investigation of Physiological Correlates of Motion Sickness Induced by Viewing an Optokinetic Rotating Drum, / Aviat. Space Environ. Med., 1999, vol. 70, pp. 759-65.
    67. Chen, Y.-C., Duann, J.-R., Chuang, S.-W., Lin, C.-L., Ko, L.-W., Jung, T.-P., and Lin, C.-T., Spatial and Temporal EEG Dynamics of Motion Sickness, / Neuroimage, 2010, vol. 49, pp. 2862-870. CrossRef
    68. Lychakov, D.V., Aristakesian, E.A., and Oganesyan, G.A., Effect of Swinging on EEG of Rats of Juvenile Age in the State of Wakefulness, / Zh. Evol. Biokhim. Fiziol., 2007, vol. 43, pp. 509-17.
    69. Gnezditsky, V.V., / Obratnaya zadacha EEG i klinicheskaya elektroentsefalografiya (The Inverse EEG Task and Clinical Electroencephalography), Moscow, 2004.
    70. Morita, M., Takeda, N., Hasegawa, S., Yamatodani, A., Wada, H., and Sakai, S.-I., Effect of Anti-Cholinergic and Cholinergic Drugs on Habituation to Motion in Rats, / Acta Otolaryngol., 1990, vol. 110, pp. 196-02. CrossRef
    71. Uno, A., Takeda, N., Horii, A., Morita, M., Yamamoto, Y., Yamatodani, A., and Kubo, T., Histamine Release from the Hypothalamus Induced by Gravity Change in Rats and Space Motion Sickness, / Physiol. Behav., 1997, vol. 61, pp. 883-87. CrossRef
    72. Hanson, A., / Why Rats Can’t Vomit, and What They Do Instead, www.ratbehavior.org/vomit.htm, 1994.
    73. Cabanac, M., Emotion and Phylogeny, / J. Consciousn. Studies, 1999, vol. 6, pp. 176-90.
    74. Cabanac, A.J. and Cabanac, M., No Emotional Fever in Toads, / J. Thermal Biol., 2004, vol. 29, pp. 669-73. CrossRef
    75. Lychakov, D.V., Effect of Weightlessness on the Vestibular System (Some Results and Perspectives of Studies), / Biologiya v Shkole, 2012, vol. 1, pp. 9-4.
  • 作者单位:D. V. Lychakov (1)

    1. Sechenov Institute of Evolutional Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
  • ISSN:1608-3202
文摘
This review presents both literature data and results of our own studies aimed at finding out if lower vertebrates are susceptible to motion sickness. In our experiments, fish and amphibians were submitted to motion for 2 h and longer on a centrifuge (f = 0.25 Hz, a centrifugal = 0.144 g) and on a parallel swing (f = 0.2 Hz, a horizontal = 0.059 g). The performed studies did not revealed in 4 fish species and in toads any single feature characteristic of motion sickness (sopite syndrome, pre-vomiting behavior or emesis). At the same time, in toads, the characteristic stress reaction appeared (escape reaction, increase of urination frequency, worsening of appetite) as well as some other responses not associated with motion sickness (synchronized head swinging, eye retraction). In trout fry, the used stimulation promoted division of individuals into groups differing by locomotor reaction to stress as well as individuals with a well-pronounced compensatory response that we called the otolithotropic reaction. Our conclusions are confirmed by analysis of results obtained by other authors. Therefore, the lower vertebrates, unlike mammals, are not susceptible to motion sickness either under terrestrial conditions or under conditions of weightlessness. Based on available experimental data and theoretical concepts of mechanism of development of the motion sickness, which have been formulated in several hypotheses (the hypothesis of discoordination, Treisman’s hypothesis, resonance hypotheses), there is put forward the synthetic hypothesis of sopite that is of conceptual values. According to this hypothesis, the unusual stimulation producing sensory-motor or sensory-sensory discoordinations or action of vestibular and visual stimuli of frequency of about 0.2 Hz is perceived by the CNS as poisoning and causes the corresponding reactions. The sopiting is, in fact, a side effect of technological evolution. It is suggested that in the lower vertebrates, unlike mammals, there is absent a hypothetic vomiting center, therefore, they are not submitted to motion sickness.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700