用户名: 密码: 验证码:
Coupled SPP Modes on 1D Plasmonic Gratings in Conical Mounting
详细信息    查看全文
  • 作者:E. Gazzola (1) (2)
    L. Brigo (3)
    G. Zacco (2) (4)
    P. Zilio (2)
    G. Ruffato (2)
    G. Brusatin (3)
    F. Romanato (1) (2) (4)

    1. Department of Physics and Astronomy 鈥淕. Galilei鈥? University of Padova
    ; Via Marzolo 8 ; Padova ; 35131 ; Italy
    2. LaNN
    ; Laboratory for Nanofabrication of Nanodevices ; Veneto Nanotech ; Corso Stati Uniti 4 ; Padova ; 35127 ; Italy
    3. Industrial Engineering Department and INSTM
    ; University of Padova ; Via Marzolo 9 ; Padova ; 35131 ; Italy
    4. Istituto Officina dei Materiali
    ; IOM-CNR ; Area Science Park ; Strada Statale 14 Km 163.5 ; Trieste ; 34149 ; Italy
  • 关键词:Plasmonic gratings ; Long ; range surface plasmon polaritons ; Short ; range surface plasmon polaritons ; Conical mounting ; SPP propagation ; SPP radiative losses
  • 刊名:Plasmonics
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:9
  • 期:4
  • 页码:867-876
  • 全文大小:2,110 KB
  • 参考文献:1. Raether, H (1988) Surface plasmons on smooth and rough surfaces and on gratings. Springer, Berlin
    2. Wood, RW (1902) On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Proc Phys Soc Lond 18: pp. 269 CrossRef
    3. Cowan, JJ, Arakawa, ET (1970) Dispersion of surface plasmons in dielectric-metal coatings on concave diffraction gratings. Z Phys 235: pp. 97 CrossRef
    4. Ibach H and L眉th H (2009) Solid-State Physics. Springer
    5. Yang, FZ, Sambles, JR, Bradberry, GW (1991) Long-range surface modes supported by thin films. Phys Rev B 44: pp. 5855-5872 CrossRef
    6. Rashid, Z, Selker, MD, Catrysse, PB, Brongersma, ML (2004) Geometries and materials for subwavelength surface plasmon modes. J Opt Soc Am A 21: pp. 2442-2446 CrossRef
    7. Maier SA (2007) Plasmonics: fundamentals and applications, Springer
    8. Burke, JJ, Stegeman, GI, Tamir, T (1986) Surface-polariton-like waves guided by thin, lossy metal films. Phys Rev B 33: pp. 5186-55201 CrossRef
    9. Bryan-Brown, GP, Sambles, JR, Hutley, MC (1990) Polarization conversion through the excitation of surface plasmons on a metallic grating. J Mod Opt 37: pp. 1227-1232 CrossRef
    10. Veith, M, Muller, KG, Mittler-Neher, S, Knoll, W (1995) Propagation and deflection of guided modes in planar waveguides via grating rotation. Appl Phys B 60: pp. 1-4 CrossRef
    11. Romanato, F, Hong, LK, Kang, HK, Wong, CC, Yun, Z, Knoll, W (2008) Azimuthal dispersion and energy mode condensation of grating-coupled surface plasmon polaritons. Phys Rev B 77: pp. 245435 CrossRef
    12. Shankaran, DR, Gobi, KV, Miura, N (2007) Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sensors Actuators B 121: pp. 158-177 CrossRef
    13. Habauzit, D, Chopineau, J, Roig, B (2007) SPR-based biosensors: a tool for biodetection of hormonal compounds. Anal Bioanal Chem 387: pp. 1215-1223 CrossRef
    14. Nenninger, GG, Tobi拧ka, P, Homola, J, Yee, SS (2001) Long-range surface plasmons for high-resolution surface plasmon resonance sensors. Sensors Actuators B 74: pp. 145-151 CrossRef
    15. Berini, P, Charbonneau, R, Lahoud, N (2007) Long-range surface plasmons on ultrathin membranes. Nano Lett 7: pp. 1376-1380 CrossRef
    16. Krupin, O, Asiri, H, Wang, C, Tait, RN, Berini, P (2013) Biosensing using straight long-range surface plasmon waveguides. Opt Express 21: pp. 698-709 CrossRef
    17. Vala, M, Robelek, R, Bockov谩, M, Wegener, J, Homola, J (2013) Real-time label-free monitoring of the cellular response to osmotic stress using conventional and long-range surface plasmons. Biosens Bioelectron 240: pp. 417-421 CrossRef
    18. Shi, H, Liu, Z, Wang, X, Guo, J, Liu, L, Luo, L, Guo, J, Ma, H, Sun, S, He, Y (2013) A symmetrical optical waveguide based surface plasmon resonance biosensing system. Sens. Actuators B 185: pp. 91-96 CrossRef
    19. Romanato, F, Lee, KH, Kang, HK, Ruffato, G, Wong, CC (2009) Sensitivity enhancement in grating coupled surface plasmon resonance by azimuthal control. Opt Express 17: pp. 12145-12154 CrossRef
    20. Sonato, A, Ruffato, G, Zacco, G, Silvestri, D, Natali, M, Carli, M, Giallongo, G, Granozzi, G, Morpurgo, M, Romanato, F (2013) Enhanced sensitivity azimuthally controlled grating-coupled surface plasmon resonance applied to the calibration of thiol-poly(ethylene oxide) grafting Sens. Actuators B Chem 181: pp. 559-566 CrossRef
    21. Ruffato, G, Romanato, F (2012) Grating-coupled surface plasmon resonance in the conical mounting with polarization modulation. Opt Lett 37: pp. 2718-2720 CrossRef
    22. Ruffato, G, Pasqualotto, E, Sonato, A, Zacco, G, SIlvestri, D, Morpurgo, M, Toni, A, Romanato, F (2013) Implementation and testing of a compact and high-resolution sensing device based on grating-coupled surface plasmon resonance with polarization modulation. Sensors Actuators B 185: pp. 179-187 CrossRef
    23. Zacco, G, Romanato, F, Sonato, A, Sammito, D, Ruffato, G, Morpurgo, M, Silvestri, D, Carli, M, Schiavuta, P, Brusatin, G (2011) Sinusoidal plasmonic crystals for bio-detection sensors. Microelectron Eng 88: pp. 1898-1901 CrossRef
    24. Antonello, A, Jia, B, He, Z, Buso, D, Perotto, G, Brigo, L, Brusatin, G, Guglielmi, M, Gu, M, Martucci, A (2012) Optimized electroless silver coating for optical and plasmonic applications. Plasmonics 7: pp. 633-639 CrossRef
    25. Loy, DA, Shea, KJ (1995) Bridged polysilsesquioxanes. Highly porous hybrid organic鈥搃norganic materials. Chem Rev 95: pp. 1431-1442 CrossRef
    26. Brigo, L, Grenci, G, Carpentiero, A, Pistore, A, Tormen, M, Guglielmi, M, Brusatin, G (2011) Positive resist for UV and X-ray lithography synthesized through sol鈥揼el chemistry. J Sol鈥揼el Sci Technol 60: pp. 400-407 CrossRef
    27. Ong, BH, Yuan, X, Tjin, SC (2007) Bimetallic silver鈥揼old film waveguide surface plasmon resonance sensor. Fiber Integr Opt 26: pp. 229-240 CrossRef
    28. Fujiwara H (2007) Spectroscopic Ellipsometry. Wiley
    29. Romanato, F, Lee, KH, Ruffato, G, Wong, CC (2010) The role of polarization on surface plasmon polariton excitation on metallic gratings in the conical mounting. Appl Phys Lett 96: pp. 111103 63/1.3361653" target="_blank" title="It opens in new window">CrossRef
    30. Bozhevolnyi, SI, S酶ndergaard, T (2007) General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators. Opt Express 15: pp. 10869 CrossRef
    31. Parisi, G, Zilio, P, Romanato, F (2012) Complex Bloch-modes calculation of plasmonic crystal slabs by means of finite elements method. Opt Express 20: pp. 16690 CrossRef
    32. Davanco, M, Urzhumov, Y, Shvets, G (2007) The complex Bloch bands of a 2D plasmonic crystal displaying isotropic negative refraction. Opt Express 15: pp. 9681-9691 CrossRef
    33. Fietz, C, Urzhumov, Y, Shvets, G (2011) Complex k band diagrams of 3D metamaterial/photonic crystals. Opt Express 19: pp. 19027-19041 CrossRef
    34. Brigo, L, Gazzola, E, Cittadini, M, Zilio, P, Zacco, G, Romanato, F, Martucci, A, Guglielmi, M, Brusatin, G (2013) Short and long range surface plasmon polariton waveguides for xylene sensing. Nanotechnology 24: pp. 155502 CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Nanotechnology
    Biophysics and Biomedical Physics
    Biochemistry
  • 出版者:Springer US
  • ISSN:1557-1963
文摘
Plasmonic nanostructures exhibit a variety of surface plasmon polariton (SPP) modes, with different characteristic properties. While a single metal dielectric interface supports a single-interface SPP mode, a thin metal film can support extended long range SPPs and strongly confined short range SPPs. When the coupling between the incident light and the SPP is provided through a diffraction grating, it is possible to azimuthally rotate the grating with respect to the scattering plane, introducing the possibility to propagate the SPP along an arbitrary direction. We present a theoretical and experimental analysis of the coupling conditions for long range and short range SPPs under this configuration. We also investigate the propagation length of the modes depending on the propagation direction with respect to the grating grooves, showing in particular that the long range SPP propagation length can be sensibly enhanced with respect to the null-azimuth case.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700