用户名: 密码: 验证码:
The effect of graph partitioning techniques on parallel Block FSAI preconditioning: a computational study
详细信息    查看全文
  • 作者:Carlo Janna (1)
    Nicola Castelletto (2)
    Massimiliano Ferronato (1)

    1. Department ICEA
    ; University of Padova ; via Trieste 63 ; 35121 ; Padova ; Italy
    2. Department Energy Resources Engineering
    ; Stanford University ; 367 Panama St. ; Stanford ; CA ; 94305-2220 ; USA
  • 关键词:Linear systems ; Iterative methods ; Preconditioning ; Parallel computing ; 65F08 ; 65F10 ; 65Y05 ; 68W10
  • 刊名:Numerical Algorithms
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:68
  • 期:4
  • 页码:813-836
  • 全文大小:2,274 KB
  • 参考文献:1. Cerd脿n, J, Faraj, T, Malla, N, Marin, J, Mas, J (2010) Block approximate inverse preconditioners for sparse nonsymmetric linear systems. Electron. Trans. Numer. Anal. 37: pp. 23-40
    2. Bergamaschi, L, Martinez, A (2011) FSAI-based parallel Mixed Constraint Preconditioners for saddle point problems arising in geomechanics. J. Comput. Appl. Math. 236: pp. 308-318 CrossRef
    3. Lazarov, BS, Sigmund, O (2011) Factored parallel preconditioner for the saddle point problem. Int. J. Numer. Methods Biomed. Eng. 27: pp. 1398-1410
    4. Ferronato, M, Janna, C, Pini, G (2012) Parallel solution to ill-conditioned FE geomechanical problems. Int. J. Numer. Anal. Methods Geomech. 36: pp. 422-437 CrossRef
    5. Ferronato, M, Janna, C, Pini, G (2012) Shifted FSAI preconditioners for the efficient parallel solution of non-linear groundwater flow models. Int. J. Numer. Methods Eng. 89: pp. 1707-1719 CrossRef
    6. Janna, C, Ferronato, M, Gambolati, G (2012) Parallel inexact constraint preconditioning for ill-conditioned consolidation problems. Comput. Geosci. 16: pp. 661-675 CrossRef
    7. Ferronato, M.: Preconditioning for sparse linear systems at the dawn of the 21st century: history, current developments, and future perspectives. ISRN Appl. Math. (2012). doi:10.5402/2012/127647
    8. Janna, C, Ferronato, M, Gambolati, G (2010) A Block FSAI-ILU parallel preconditioner for symmetric positive definite linear systems. SIAM J. Sci. Comput. 32: pp. 2468-2484 CrossRef
    9. Janna, C, Ferronato, M (2011) Adaptive pattern research for Block FSAI preconditioning. SIAM J. Sci. Comput. 33: pp. 3357-3380 CrossRef
    10. Ferronato, M, Janna, C, Pini, G (2012) Efficient parallel solution to large size sparse eigenproblems with Block FSAI preconditioning. Numer. Linear Algebra Appl. 19: pp. 797-815 CrossRef
    11. Janna, C, Ferronato, M, Gambolati, G (2013) Enhanced Block FSAI preconditioning using domain decomposition. SIAM J. Sci. Comput. 35: pp. S229-S249 CrossRef
    12. Ferronato, M, Janna, C, Pini, G (2014) A generalized Block FSAI preconditioner for nonsymmetric linear systems. J. Comput. Appl. Math. 256: pp. 230-241 CrossRef
    13. Kolotilina, LY, Yeremin, AY (1993) Factorized sparse approximate inverse preconditioning. I. Theory. SIAM J. Matrix Anal. Appl. 14: pp. 45-58 CrossRef
    14. Benzi, M, Szyld, DB, Duin, A (1999) Orderings for incomplete factorization preconditioning of nonsymmetric problems. SIAM J. Sci. Comput. 20: pp. 1652-1670 CrossRef
    15. Benzi, M, T暖ma, M (2000) Orderings for factorized sparse approximate inverse preconditioners. SIAM J. Sci. Comput. 21: pp. 1851-1868 CrossRef
    16. Cullum, JK, Johnson, K, T暖ma, M (2003) Effects of problem decomposition (partitioning) on the rate of convergence of parallel numerical algorithms. Numer. Linear Algebra Appl. 10: pp. 445-465 CrossRef
    17. Cuthill, E., McKee, J.: Reducing the bandwidth of sparse symmetric matrices. In: Proceedings of the 1969 24th National Conference, pp. 157鈥?72 (1969)
    18. George, A (1971) Computer Implementation of the Finite Element Method. Tech. Rep. STAN-CS-208. Department of Computer Science, Stanford University, Stanford
    19. Georges, JA, Liu, JW (1981) Computer Solution of Large Sparse Positive Definite Systems. Prentice-Hall, Englewood Cliffs
    20. Tinney, WF, Walker, JW (1967) Direct solutions of sparse network equations by optimally ordered triangular factorization. Proc. IEEE 55: pp. 1801-1809 CrossRef
    21. George, A, Liu, JW (1989) The evolution of the minimum degree ordering algorithm. SIAM Rev. 31: pp. 1-19 CrossRef
    22. Amestoy, P, Davis, T, Duff, I (1996) An approximate minimum degree ordering algorithm. SIAM J. Matrix Anal. Appl. 17: pp. 886-905 CrossRef
    23. Barnard, S, Simon, HD (1994) A fast multilevel implementation of recursive spectral bisection for partitioning unstructured problems. Concurr Pract Experience 6: pp. 101-117 CrossRef
    24. Hendrickson, B., Leland, R.: A multilevel algorithm for partitioning graphs. In: Proceedings of the ACM/IEEE Conference on Supercomputing (1995)
    25. Karypis, G, Kumar, V (1998) Multilevel k-way partitioning scheme for irregular graphs. J. Parallel Distrib. Comput. 48: pp. 96-129 CrossRef
    26. Karypis, G, Kumar, V (1999) A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20: pp. 359-392 CrossRef
    27. Chevalier, C., Pellegrini, F.: Improvement of the efficiency of genetic algorithms for scalable parallel graph partitioning in a multi-level framework. In: Proceedings of EuroPar 2006. Lecture Notes on Computer Science, no. 4128, pp. 243鈥?52 (2006)
    28. Pellegrini, F.: A parallelisable multi-level banded diffusion scheme for computing balanced partitions with smooth boundaries. In: Proceedings of EuroPar 2007. Lecture Notes on Computer Science, no. 4641, pp. 191鈥?00 (2007)
    29. Pellegrini, F.: SCOTCH, software package and libraries for sequential and parallel graph partitioning, static mapping, and sparse matrix block ordering, and sequential mesh and hypergraph partitioning (version 5.1.10). Electronic document available at http://www.labri.fr/perso/pelegrin/scotch (2010)
    30. Karypis, G., Kumar, V.: METIS - A software package for partitioning unstructured graphs, partitioning meshes and computing fill-reducing orderings of sparse matrices - Version 5.0. Electronic document available at http://glaros.dtc.umn.edu/gkhome/metis/metis/overview (2011)
    31. Holland, RM, Wathen, AJ, Shaw, GJ (2005) Sparse approximate inverses and target matrices. SIAM J. Sci. Comput. 26: pp. 1000-1011 CrossRef
    32. Saad, Y (1994) ILUT: a dual threshold incomplete ILU factorization. Numer. Linear Algebra Appl. 1: pp. 387-402 CrossRef
    33. Li, N, Saad, Y, Chow, E (2003) Crout version of ILU for general sparse matrices. SIAM J. Sci. Comput. 25: pp. 716-728 CrossRef
    34. Janna, C, Comerlati, A, Gambolati, G (2009) A comparison of projective and direct solvers for finite elements in elastostatics. Adv. Eng. Softw. 40: pp. 675-685 CrossRef
    35. Chow, E (2000) A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM J. Sci. Comput. 21: pp. 1804-1822 CrossRef
    36. Grote, M, Huckle, T (1997) Parallel preconditioning with sparse approximate inverses. SIAM J. Sci. Comput. 18: pp. 838-853 CrossRef
    37. Huckle, T (1999) Approximate sparsity patterns for the inverse of a matrix and preconditioning. Appl. Numer. Math. 30: pp. 291-303 CrossRef
    38. Huckle, T (2003) Factorized sparse approximate inverses for preconditioning. J. Supercomput. 25: pp. 109-117 CrossRef
    39. Kaporin, IE (1994) New convergence results and preconditioning strategies for the conjugate gradient method. Numer. Linear Algebra Appl. 1: pp. 179-210 CrossRef
    40. Anderson, G, Bai, Z, Bischof, C, Demmel, J, Dongarra, J, Du Croz, J, Greenbaum, A, Kenney, AM, Ostrouchov, S, Sorensen, D (1992) LAPACK User鈥檚 Guide. SIAM, Philadelphia
    41. Bridson, R, Tang, WP (1999) Ordering, anisotropy and factored sparse approximate inverses. SIAM J. Sci. Comput. 21: pp. 867-882 CrossRef
    42. Saad, Y (2003) Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia CrossRef
    43. Saad, Y.: SPARSKIT, a basic tool-kit for sparse matrix computations (Version 2). Electronic document available at http://www-users.cs.umn.edu/~saad/software/SPARSKIT (1988)
    44. Kernighan, BW, Lin, S (1970) An efficient heuristic procedure for partitioning graphs. Bell Syst. Technol. J. 49: pp. 291-307 CrossRef
    45. Duff, IS, Kaya, K (2013) Preconditioners based on strong subgraphs. Electron. Trans. Numer. Anal. 40: pp. 225-249
    46. Vecharinsky, E, Saad, Y, Sosonika, M (2014) Graph partitioning using matrix values for preconditioning symmetric positive definite systems. SIAM J. Sci. Comput. 36: pp. A63-A87 CrossRef
    47. Teatini, P, Ferronato, M, Gambolati, G, Ba霉, D, Putti, M (2010) Anthropogenic Venice uplift by seawater pumping into a heterogeneous aquifer system. Water Resour. Res. 46: pp. W11547
    48. Ferronato, M, Gambolati, G, Janna, C, Teatini, P (2010) Geomechanical issues of anthropogenic CO2 sequestration in exploited gas fields. Energy Convers. Manag. 51: pp. 1918-1928 CrossRef
    49. Davis, TA, Hu, Y (2011) The University of Florida Sparse Matrix Collection. ACM Trans. Math. Softw. 38: pp. 1-25
  • 刊物类别:Computer Science
  • 刊物主题:Numeric Computing
    Algorithms
    Mathematics
    Algebra
    Theory of Computation
  • 出版者:Springer U.S.
  • ISSN:1572-9265
文摘
Adaptive Block FSAI (ABF) is a novel preconditioner which has proved efficient for the parallel solution of symmetric positive definite (SPD) linear systems and eigenproblems. A possible drawback stems from its reduced strong scalability, as the iteration count to converge for a given problem tends to grow with the number of processors used. The preliminary use of graph partitioning techniques can help improve the preconditioner quality and scalability. According to the specific theoretical properties of Block FSAI, different partitionings are selected and tested in a set of matrices arising from SPD engineering applications. The results show that using an appropriate graph partitioning technique with ABF may play an important role to increase the preconditioner efficiency and robustness, allowing for its effective use also in massively parallel simulations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700