用户名: 密码: 验证码:
Measurement of the oscillatory flow field inside tapered cylindrical inkjet nozzles using micro-particle image velocimetry
详细信息    查看全文
  • 作者:E. Cheng ; A. Ahmadi ; K. C. Cheung
  • 关键词:Inkjet ; Micro ; particle image velocimetry ; Oscillatory flow field ; Hydrodynamics
  • 刊名:Microfluidics and Nanofluidics
  • 出版年:2015
  • 出版时间:September 2015
  • 年:2015
  • 卷:19
  • 期:3
  • 页码:635-646
  • 全文大小:2,989 KB
  • 参考文献:Adrian RJ (1991) Particle-imaging techniques for experimental fluid mechanics. Annu Rev Fluid Mech 23:261-04CrossRef
    Alcock RD, Garner CP, Halliwell NA, Coupland JM (2004) An enhanced HPIV configuration for flow measurement through thick distorting windows. Meas Sci Technol 15:631CrossRef
    Boland T, Xu T, Damon B, Cui X (2006) Application of inkjet printing to tissue engineering. Biotechnol J 1:910-17CrossRef
    Bourdon CJ, Olsen MG, Gorby AD (2004) Power-filter technique for modifying depth of correlation in microPIV experiments. Exp Fluids 37:263-71CrossRef
    Castrejón-Pita JR, Hoath SD, Castrejón-Pita AA, Morrison NF, Hsiao W-K, Hutchings IM (2012a) Time-resolved particle image velocimetry within the nozzle of a drop-on-demand printhead. J Imaging Sci Technol 56:50401--0401-CrossRef
    Castrejón-Pita JR, Hoath SD, Hutchings IM (2012b) Velocity profiles in a cylindrical liquid jet by reconstructed velocimetry. J Fluids Eng 134:011201CrossRef
    Chahal D, Ahmadi A, Cheung KC (2012) Improving piezoelectric cell printing accuracy and reliability through neutral buoyancy of suspensions. Biotechnol Bioeng 109:2932-940CrossRef
    Chee M, Yang R, Hubbell E, Berno A, Huang XC, Stern D, Winkler J, Lockhart DJ, Morris MS, Fodor SP (1996) Accessing genetic information with high-density DNA arrays. Science 274:610-14CrossRef
    Cheng E, Ahmadi A, Cheung KC (2014) Investigation of the hydrodynamics of suspended cells for reliable inkjet cell printing. In: Proceedings of the ASME 2014 4th Joint US-European fluids engineering division summer meeting and 12th international conference on nanochannels, microchannels, and minichannels ICNMM2014-21583, pp V001T03A010; 8 p
    Cole RW, Jinadasa T, Brown CM (2011) Measuring and interpreting point spread functions to determine confocal microscope resolution and ensure quality control. Nat Protoc 6:1929-941CrossRef
    Cooley PW, Wallace DB, Antohe BV (2001) Applications of ink-jet printing technology to BioMEMS and microfluidic systems. SPIE conference on microfluidics and BioMEMS. In: vol. 4560. p 177-88
    Derby B (2010) Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution. Annu Rev Mater Res 40:395-14CrossRef
    Dijksman JF (1984) Hydrodynamics of small tubular pumps. J Fluid Mech 139:173-91CrossRef
    Fakhfouri V, Mermoud G, Kim J, Martinoli A, Brugger J (2009) Drop-on-demand inkjet printing of SU-8 polymer. Micro Nanosyst 1:63-7CrossRef
    Kang KH, Lee SJ, Lee CM, Kang IS (2004) Quantitative visualization of flow inside an evaporating droplet using the ray tracing method. Meas Sci Technol 15:1104CrossRef
    Lemmo AV, Rose DJ, Tisone TC (1998) Inkjet dispensing technology: applications in drug discovery. Curr Opin Biotechnol 9:615-17CrossRef
    Lorber B, Hsiao W-K, Hutchings IM, Martin KR (2014) Adult rat retinal ganglion cells and glia can be printed by piezoelectric inkjet printing. Biofabrication 6:015001CrossRef
    Magdassi S (2009) The chemistry of inkjet inks. World scientific. pp 8
    Mei J, Lovell MR, Mickle MH (2005) Formulation and processing of novel conductive solution inks in continuous inkjet printing of 3-D electric circuits. IEEE Trans Electron Packag Manuf 28:265-73CrossRef
    Meinhart CD, Zhang H (2000) The flow structure inside a microfabricated inkjet printhead. J Microelectromechanical Syst 9:67-5CrossRef
    Meinhart CD, Wereley ST, Gray MHB (2000) Volume illumination for two-dimensional particle image velocimetry. Meas Sci Technol 11:809CrossRef
    Minor G, Oshkai P, Djilali N (2007) Optical distortion correction for liquid droplet visualization using the ray tracing method: further considerations. Meas Sci Technol 18:L23CrossRef
    Mueller S, Llewellin EW, Mader HM (2010) The rheology of suspensions of solid particles. Proc R Soc Lond Math Phys Eng Sci 466:1201-228CrossRef
    Nakamura M, Kobayashi A, Takagi F, Watanabe A, Hiruma Y, Ohuchi K, Iwasaki Y, Horie M, Morita I, Takatani S (2005) Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue Eng 11:1658-666CrossRef
    Parker J, Merati P (1996) An investigation of turbulent Taylor-Couette flow using laser Doppler velocimetry in a refractive index matched facility. J Fluids Eng 118:810-18CrossRef
    Rossi M, Segura R, Cierpka C, K?hler CJ (2011) On the effect of particle image intensity and image preprocessing on the depth of correlation in micro-PIV. Exp Fluids 52:1063-075CrossRef
    Sachs E, Cima M, Williams P, Brancazio D, Cornie J (1992) Three dimensional printing: rapid tooling and prototypes directly from a CAD model. J Manuf Sci Eng 114:481-88
    Schoeppler M (2006) Diverging ink jet technologies and applications. NIP Digit Fabr Conf 2006:1-
    Shin D-Y, Smith PJ (2008) Theoretical investigation of the influence of nozzle diameter variation on the fabrication of thin film transistor liquid crystal display color filters. J Appl Phys 103:114905
  • 作者单位:E. Cheng (1)
    A. Ahmadi (1)
    K. C. Cheung (1)

    1. University of British Columbia, 4060-2332 Main Mall, Vancouver, BC, V6T 1Z4, Canada
  • 刊物类别:Engineering
  • 刊物主题:Engineering Fluid Dynamics
    Medical Microbiology
    Polymer Sciences
    Nanotechnology
    Mechanics, Fluids and Thermodynamics
    Engineering Thermodynamics and Transport Phenomena
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1613-4990
文摘
The flow field within a tapered, cylindrical, piezoelectrically actuated glass inkjet nozzle is captured using fluorescence micro-PIV (μPIV) assisted by a novel, custom-designed PDMS micro-fabricated nozzle holder and a microsecond-resolution cyclic triggering system. The presented work overcomes key imaging challenges such as distortion from the refractive index mismatched curved glass–air interface and the typically large depth of field/correlation found in inkjet imaging set-ups. The PDMS holder permits fluorescence imaging of the seeded flow tracing particles with minimal distortion as the holder is refractive-index-matched with the glass nozzle. The cyclic triggering system allows visualization of the transient phases of a periodic droplet ejection event. The system utilizes an inverted microscope with an objective lens capable of producing a low depth of correlation of 12.25 μm. Double-frame images for μPIV were acquired beginning from the onset of droplet formation to study the flow field evolution during droplet formation and after droplet break-off. An oscillatory flow field was observed within the nozzle during the droplet ejection process which closely correlates with modelling results. Keywords Inkjet Micro-particle image velocimetry Oscillatory flow field Hydrodynamics

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700