用户名: 密码: 验证码:
A topological analysis of the bonding in [M2(CO)10] and [M3(μ-H)3(CO)12] complexes (M = Mn, Tc,
详细信息    查看全文
  • 作者:Juan F. Van der Maelen ; Javier A. Cabeza
  • 关键词:Quantum theory of atoms in molecules (QTAIM) ; Electron localization function (ELF) ; Source function (SF) ; Transition metal carbonyl complexes ; Multicenter bonding
  • 刊名:Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta)
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:135
  • 期:3
  • 全文大小:1,945 KB
  • 参考文献:1.Bader RFW (1990) Atoms in molecules: a quantum theory. Clarendon Press, Oxford
    2.Popelier PLA (2000) Atoms in molecules: an introduction. Prentice Hall, HarlowCrossRef
    3.Coppens P (1997) X-ray charge densities and chemical bonding. International Union of Crystallography and Oxford University Press, Oxford
    4.Matta CF, Boyd RJ (eds) (2007) The quantum theory of atoms in molecules. Wiley-VCH, Weinheim
    5.Gatti C, Macchi P (eds) (2012) Modern charge density analysis. Springer, Heidelberg
    6.Foroutan-Nejad C, Shahbazian S, Marek R (2014) Chem Eur J 20:10140–10152CrossRef
    7.Macchi P (2013) Crystallogr Rev 19:58–101CrossRef
    8.Macchi P, Gillet JM, Taulelle F, Campo J, Claisere N, Lecomte C (2015) IUCr J 2:441–451CrossRef
    9.Bader RFW (1998) J Phys Chem A 102:7314–7323CrossRef
    10.Cortés-Guzmán F, Bader RFW (2005) Coord Chem Rev 249:633–662CrossRef
    11.Koritsanszky TS, Coppens P (2001) Chem Rev 101:1583–1627CrossRef
    12.Gatti C (2005) Z Kristallogr 220:399–457
    13.Coppens P, Iversen BB, Larsen FK (2005) Coord Chem Rev 249:179–195CrossRef
    14.Ling Y, Zhang Y (2010) Ann Rep Comput Chem 6:65–77
    15.Macchi P (2009) Angew Chem Int Ed 48:5793–5795CrossRef
    16.Bader RFW, Stephens ME (1975) J Am Chem Soc 97:7391–7399CrossRef
    17.Bytheway I, Gillespie RJ, Tang TH, Bader RFW (1995) Inorg Chem 34:2407–2414CrossRef
    18.Scherer W, Sirsch P, Shorokhov D, Tafipolsky M, McGrady GS, Gullo E (2003) Chem Eur J 9:6057–6070CrossRef
    19.Jørgensen MRV, Hathwar VR, Bindzus N, Wahlberg N, Chen YS, Overgaard J, Iversen BB (2014) IUCr J 1:267–280CrossRef
    20.Macchi P, Sironi A (2003) Coord Chem Rev 238:383–412CrossRef
    21.Farrugia LJ, Evans C, Tegel M (2006) J Phys Chem A 110:7952–7961CrossRef
    22.Farrugia LJ, Evans C, Lentz D, Roemer M (2009) J Am Chem Soc 131:1251–1268CrossRef
    23.Van der Maelen JF, Gutiérrez-Puebla E, Monge A, García-Granda S, Resa I, Carmona E, Fernández-Díaz MT, McIntyre GJ, Pattison P, Weber HP (2007) Acta Crystallogr B 63:862–868CrossRef
    24.Macchi P, Proserpio DM, Sironi A (1998) J Am Chem Soc 120:13429–13435CrossRef
    25.Overgaard J, Clausen HF, Platts JA, Iversen BB (2008) J Am Chem Soc 130:3834–3843CrossRef
    26.Macchi P, Garlaschelli L, Sironi A (2002) J Am Chem Soc 124:14173–14184CrossRef
    27.Bo C, Sarasa JP, Poblet JM (1993) J Phys Chem 97:6362–6366CrossRef
    28.Low AA, Kunze KL, MacDougall PJ, Hall MB (1991) Inorg Chem 30:1079–1086CrossRef
    29.Bianchi R, Gervasio G, Marabello D (2000) Inorg Chem 39:2360–2366CrossRef
    30.Van der Maelen JF, Ruiz J, García-Granda S (2005) J Theor Comput Chem 4:823–832CrossRef
    31.Wolstenholme DJ, Traboulsee KT, Decken A, McGrady GS (2010) Organometallics 29:5769–5772CrossRef
    32.Popov AA, Dunsch L (2009) Chem Eur J 15:9707–9729CrossRef
    33.Varadwaj PR, Marques HM (2010) Theor Chem Acc 127:711–725CrossRef
    34.Reisinger A, Trapp N, Krossing I, Altmannshofer S, Herz V, Presnitz M, Scherer W (2007) Angew Chem Int Ed 46:8295–8298CrossRef
    35.Himmel D, Trapp N, Krossing I, Altmannshofer S, Herz V, Eickerling G, Scherer W (2008) Angew Chem Int Ed 47:7798–7801CrossRef
    36.Poulsen RD, Bentien A, Chevalier M, Iversen BB (2005) J Am Chem Soc 127:9156–9166CrossRef
    37.Abramov YA, Brammer L, Klooster WT, Bullock RM (1998) Inorg Chem 37:6317–6328CrossRef
    38.Batool M, Martin TA, Algarra AG, George MW, Macgregor SA, Mahon MF, Whittlesey MK (2012) Organometallics 31:4971–4979CrossRef
    39.Nuss H, Claiser N, Pillet S, Lugan N, Despagnet-Ayoub E, Etienne M, Lecomte C (2012) Dalton Trans 41:6598–6601CrossRef
    40.Gagliardi L (2014) In: Frenking G, Shaik S (eds) The chemical bond: chemical bonding across the periodic table. Wiley-VCH, Weinheim, pp 253–268
    41.Merino G, Donald KJ, D’Acchioli JS, Hoffmann R (2007) J Am Chem Soc 129:15295–15302CrossRef
    42.Nguyen T, Sutton AD, Brynda M, Fettinger JC, Long GJ, Power PP (2005) Science 310:844–847CrossRef
    43.La Macchia G, Li Manni G, Todorova TK, Brynda M, Aquilante F, Roos BO, Gagliardi L (2010) Inorg Chem 49:5216–5222CrossRef
    44.Brynda M, Gagliardi L, Roos BO (2009) Chem Phys Lett 471:1–10CrossRef
    45.Kreisel KA, Yap GPA, Dmitrenko O, Landis CR, Theopold KH (2007) J Am Chem Soc 129:14162–14163CrossRef
    46.Noor A, Wagner FR, Kempe R (2008) Angew Chem Int Ed 47:7246–7249CrossRef
    47.Tsai YC, Hsu CW, Yu JSK, Lee GH, Wang Y, Kuo TS (2008) Angew Chem Int Ed 47:7250–7253CrossRef
    48.Hsu CW, Yu JSK, Yen CH, Lee GH, Wang Y, Tsai YC (2008) Angew Chem Int Ed 47:9933–9936CrossRef
    49.Horvath S, Gorelsky SI, Gambarotta S, Korobkov I (2008) Angew Chem Int Ed 47:9937–9940CrossRef
    50.Weinhold F, Landis CR (2007) Science 316:61–63CrossRef
    51.Wagner FR, Noor A, Kempe R (2009) Nat Chem 1:529–536CrossRef
    52.Hall MB (1980) J Am Chem Soc 102:2104–2106CrossRef
    53.Kok RA, Hall MB (1983) Inorg Chem 22:728–734CrossRef
    54.Chisholm MN, Davidson ER, Huffmann JC, Quinlan KB (2001) J Am Chem Soc 123:9652–9664CrossRef
    55.Chisholm MN, Davidson ER, Quinlan KB (2002) J Am Chem Soc 124:15351–15358CrossRef
    56.Connor JA, Pilcher G, Skinner HA, Chisholm MH, Cotton FA (1978) J Am Chem Soc 100:7738–7739CrossRef
    57.Gagliardi L, Roos BO (2003) Inorg Chem 42:1599–1603CrossRef
    58.Saito K, Nakao Y, Sato H, Sakaki S (2006) J Phys Chem A 110:9710–9717CrossRef
    59.Roos BO, Borin AC, Gagliardi L (2007) Angew Chem Int Ed 46:1469–1472CrossRef
    60.Brown DA, Chambers WJ, Fitzpatrick NJ, Rawlinson SRM (1971) J Chem Soc A 720–725
    61.Rosa A, Ricciardi G, Baerends EJ, Stufkens DJ (1995) Inorg Chem 34:3425–3432CrossRef
    62.Weck PF, Sergeeva AP, Kim E, Boldyrev AI, Czerwinski KR (2011) Inorg Chem 50:1039–1046CrossRef
    63.Gatti C, Lasi D (2007) Faraday Discuss 135:55–78CrossRef
    64.Van der Maelen JF, García-Granda S, Cabeza JA (2011) Comput Theor Chem 968:55–63CrossRef
    65.Llusar R, Beltrán A, Andrés J, Fuster F, Silvi B (2001) J Phys Chem A 105:9460–9466CrossRef
    66.Farrugia LJ, Senn HM (2010) J Phys Chem A 114:13418–13433CrossRef
    67.Farrugia LJ, Macchi P (2012) Struct Bonding 146:127–158
    68.Van der Maelen JF, Cabeza JA (2012) Inorg Chem 51:7384–7391CrossRef
    69.Macchi P, Krawczuk A (2015) Comput Theor Chem 1053:165–172CrossRef
    70.Gatti C (2013) Phys Scrip 87:048102CrossRef
    71.Curado N, Carrasco M, Álvarez E, Maya C, Peloso R, Rodríguez A, López-Serrano J, Carmona E (2015) J Am Chem Soc 137:12378–12387CrossRef
    72.Gervasio G, Bianchi R, Marabello D (2005) Chem Phys Lett 407:18–22CrossRef
    73.Macchi P, Garlaschelli L, Martinengo S, Sironi A (1999) J Am Chem Soc 121:10428–10429CrossRef
    74.Feliz M, Llusar R, Andrés J, Berski S, Silvi B (2002) New J Chem 26:844–850CrossRef
    75.Bytheway I, Griffith CS, Koutsantonis GA, Skelton BW, White AH (2007) Eur J Inorg Chem 3240–3246
    76.Niskanen M, Hirva P, Haukka M (2009) J Chem Theory Comput 5:1084–1090CrossRef
    77.Cabeza JA, Van der Maelen JF, García-Granda S (2009) Organometallics 28:3666–3672CrossRef
    78.Gervasio G, Marabello D, Bianchi R, Forni A (2010) J Phys Chem A 114:9368–9373CrossRef
    79.Dinda S, Samuelson AG (2012) Chem Eur J 18:3032–3042CrossRef
    80.Farrugia LJ, Evans C, Senn HM, Aänninen MM, Sillanpää R (2012) Organometallics 31:2559–2570CrossRef
    81.Bianchi R, Gervasio G, Marabello D (1998) Chem Commun 1535–1536
    82.Ponec R, Yuzhakov G, Sundberg MR (2005) J Comput Chem 26:447–454CrossRef
    83.Ponec R, Yuzhakov G (2007) Theor Chem Acc 118:791–797CrossRef
    84.Bertini L, Fantucci G, De Gioia L (2011) Organometallics 30:487–498CrossRef
    85.Flierler U, Burzler M, Leusser D, Henn J, Ott H, Braunschweig H, Stalke D (2008) Angew Chem Int Ed 47:4321–4325CrossRef
    86.Götz K, Kaupp M, Braunschweig H, Stalke D (2009) Chem Eur J 15:623–632CrossRef
    87.Ponec R (2015) Comput Theor Chem 1053:195–213CrossRef
    88.Wu LC, Hsu CW, Chuang YC, Lee GH, Tsai YC, Wang Y (2011) J Phys Chem A 115:12602–12615CrossRef
    89.Gatti C (2012) Struct & Bonding 147:193–286CrossRef
    90.Macchi P, Donghi D, Sironi A (2005) J Am Chem Soc 127:16494–16504CrossRef
    91.Foroutan-Nejad C, Vicha J, Marek R, Patzschke M (2015) Phys Chem Chem Phys 17:24182–24192CrossRef
    92.Li X, Huo S, Zeng Y, Sun Z, Zheng S, Meng L (2013) Organometallics 32:1060–1066CrossRef
    93.Bertolotti F, Forni A, Gervasio G, Marabello D, Diana E (2012) Polyhedron 42:118–127CrossRef
    94.Eickerling G, Mastalerz R, Herz V, Scherer W, Himmel HJ, Reiher M (2007) J Chem Theory Comput 3:2182–2197CrossRef
    95.Eickerling G, Reiher M (2008) J Chem Theory Comput 4:286–296CrossRef
    96.Hebben N, Himmel HJ, Eickerling G, Hermann C, Reiher M, Herz V, Presnitz M, Scherer W (2007) Chem Eur J 13:10078–10087CrossRef
    97.Reiher M, Wolf A (2009) Relativistic quantum chemistry: the fundamental theory of molecular science. Wiley-VCH, WeinheimCrossRef
    98.Fux S, Reiher M (2012) Struct Bonding 147:99–142CrossRef
    99.Ponec R, Bučinský L, Gatti C (2010) J Chem Theory Comput 6:3113–3121CrossRef
    100.Sablon N, Mastalerz R, De Proft F, Geerlings P, Reiher M (2010) Theor Chem Acc 127:195–202CrossRef
    101.Schwerdtfeger P (2014) In: Frenking G, Shaik S (eds) The chemical bond: fundamental aspects of chemical bonding. Wiley-VCH, Weinheim, Germany, pp 383–404CrossRef
    102.Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) GAUSSIAN09, Revision B.01. Gaussian Inc., Wallingford, CT
    103.Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789CrossRef
    104.Perdew JP (1986) Phys Rev B 33:8822–8824CrossRef
    105.Becke AD (1993) J Chem Phys 98:5648–5652CrossRef
    106.Huzinaga S, Miguel B (1990) Chem Phys Lett 175:289–291CrossRef
    107.Huzinaga S, Klobukowski M (1993) Chem Phys Lett 212:260–264CrossRef
    108.van Lenthe E, Baerends EJ (2003) J Comput Chem 24:1142–1156CrossRef
    109.Baerends EJ, Ziegler T, Autschbach J, Bashford D, Bérces A, Bickelhaupt FM, Bo C, Boerrigter PM, Cavallo L, Chong DP, Deng L, Dickson RM, Ellis DE, van Faassen M, Fan L, Fischer TH, Fonseca-Guerra C, Ghysels A, Giammona A, van Gisbergen SJA, Götz AW, Groeneveld JA, Gritsenko OV, Grüning M, Gusarov S, Harris FE, van den Hoek P, Jacob CR, Jacobsen H, Jensen L, Kaminski JW, van Kessel G, Kootstra F, Kovalenko A, Krykunov MV, van Lenthe E, McCormack DA, Michalak A, Mitoraj M, Neugebauer J, Nicu VP, Noodleman L, Osinga VP, Patchkovskii S, Philipsen PHT, Post D, Pye CC, Ravenek W, Rodríguez JI, Ros P, Schipper PRT, Schreckenbach G, Seldenthuis JS, Seth M, Snijders JG, Solà M, Swart M, Swerhone D, te Velde G, Vernooijs P, Versluis L, Visscher L, Visser O, Wang F, Wesolowski TA, van Wezenbeek EM, Wiesenekker G, Wolff SK, Woo TK, Yakovlev AL (2012) ADF2012, Revision 01d, SCM, Theoretical Chemistry. Vrije Universiteit, Amsterdam
    110.Farrugia LJ, Mallinson PR, Stewart B (2003) Acta Crystallogr B 59:234–247CrossRef
    111.Bailey MF, Dahl LF (1965) Inorg Chem 4:1140–1145CrossRef
    112.Churchill MR, Amoh KN, Wasserman HJ (1981) Inorg Chem 20:1609–1611CrossRef
    113.Kirtley SW, Olsen JP, Bau R (1973) J Am Chem Soc 95:4532–4536CrossRef
    114.Alberto R, Schibli R, Schubiger A, Abram U, Hübener R, Berke H, Kaden TA (1996) Chem Commun 1291–1292
    115.Masciocchi N, Sironi A (1990) J Am Chem Soc 112:9395–9397CrossRef
    116.Keith TA (2015) AIMAll, Version 15.09.27, TK Gristmill Software, Overland Park, Kansas
    117.Biegler-König F, Schönbohm J (2002) J Comput Chem 23:1489–1494CrossRef
    118.Kohout M (2011) DGrid 4.6. Max Planck Institute for Physical Chemistry of Solids, Dresden
    119.Matito E, Solá M (2009) Coord Chem Rev 253:647–665CrossRef
    120.Grin Y, Savin A, Silvi B (2014) In: Frenking G, Shaik S (eds) The chemical bond: fundamental aspects of chemical bonding. Wiley-VCH, Weinheim, pp 345–382CrossRef
    121.Feixas F, Matito E, Duran M, Poater J, Solà M (2011) Theor Chem Acc 128:419–431CrossRef
    122.Kohout M, Wagner FR, Grin Y (2002) Theor Chem Acc 108:150–156CrossRef
  • 作者单位:Juan F. Van der Maelen (1)
    Javier A. Cabeza (2)

    1. Departamento de Química Física y Analítica-CINN, Universidad de Oviedo-CSIC, 33071, Oviedo, Spain
    2. Departamento de Química Orgánica e Inorgánica-IUQOEM and Centro de Innovación en Química Avanzada ORFEO-CINQA, Universidad de Oviedo-CSIC, 33071, Oviedo, Spain
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Theoretical and Computational Chemistry
    Inorganic Chemistry
    Organic Chemistry
    Physical Chemistry
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-2234
文摘
The M–M, M–H, and M–CO bonding interactions existing in the group 7 transition metal carbonyl complexes [M2(CO)10] and [M3(μ-H)3(CO)12] (M = Mn, Tc, Re) have been theoretically studied under the perspective of the Quantum Theory of Atoms in Molecules (QTAIM). Several local and integral topological properties of the electron density involved in these interactions, as well as the source function (SF) and the electron localization function, have been computed. The results confirm that the metal atoms in the binuclear [M2(CO)10] complexes are connected through a localized M–M bond that implicates little electron density (it increases from M = Mn to Tc and Re). On the other hand, such a bonding has not been found in the trinuclear [M3(μ-H)3(CO)12] complexes, which, instead, contain a 6c–6e bonding interaction delocalized over their six-membered M3(μ-H)3 ring, as revealed by the non-negligible non-bonding delocalization indexes. The existence of significant CO to M π-back-donation, slightly higher in the trinuclear clusters than in the binuclear complexes, is indicated by the M···OCO delocalization indexes and SF calculations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700