用户名: 密码: 验证码:
Effects of phosphate dispersants on the liquid limit, sediment volume and apparent viscosity of clayey soil/calcium-bentonite slurry wall backfills
详细信息    查看全文
  • 作者:Yan-Jun Du ; Yu-Ling Yang ; Ri-Dong Fan ; Fei Wang
  • 关键词:dispersant ; liquid limit ; soil ; bentonite ; slurry wall ; sedimentation
  • 刊名:KSCE Journal of Civil Engineering
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:20
  • 期:2
  • 页码:670-678
  • 全文大小:820 KB
  • 参考文献:Adebowale, K. O., Unuabonah, I. E., and Olu-Owolabi, B. I. (2005). “Adsorption of some heavy metal ions on sulfate- and phosphatemodified kaolin.” Applied Clay Science, Vol. 29, No. 2, pp. 145–148, DOI: 10.​1016/​j.​clay.​2004.​10.​003 .CrossRef
    API 13A (2010). Specification for drilling fluids materials: API 13A, American Petroleum Institute (API), Washington, D.C.
    Asada, M. and Horiuchi, S. (2005). “High-density bentonite slurry for seepage barriers.” Journal of Materials in Civil Engineering, Vol. 17, No. 2, pp. 178–187, DOI: 10.1061/(ASCE)0899-1561(2005) 17:2(178).CrossRef
    Cerato, A. B. and Luteneggerl, A. J. (2002). “Determination of surface area of fine-grained soils by the Ethylene Glycol Monoethyl Ether (EGME) method.” Geotechnical Testing Journal, Vol. 25, No. 3, pp. 315–321, DOI: 10.​1520/​GTJ11087J .
    D’Appolonia, D. J. (1980). “Soil-bentonite slurry trench cutoffs.” Journal of the Geotechnical Engineering Division, ASCE, Vol. 106, No. 4, pp. 399–417.
    Du, Y. J., Fan, R. D., Reddy, K. R., Liu, S. Y., and Yang, Y. L. (2015). “Impacts of presence of lead contamination in the clayey soilcalcium bentonite cutoff wall backfills.” Applied Clay Science, Vol. 108, pp. 111–122, DOI: 10.​1016/​j.​clay.​2015.​02.​006 .CrossRef
    Du, Y. J. and Hayashi, S. (2006). “A study on sorption properties of Cd2+ on Ariake clay for evaluating its potential use as a landfill barrier material.” Applied Clay Science, Vol. 32, Nos. 1–2, pp. 14–24, DOI: 10.​1016/​j.​clay.​2006.​01.​003 .CrossRef
    Du, Y. J., Jiang, N. J., Liu, S. Y., Jin, F., Singh, D. N., and Puppala, A. J. (2014). “Engineering properties and microstructural characteristics of cement-stabilized zinc-contaminated kaolin.” Canadian Geotechnical Journal, Vol. 51, No. 3, pp. 289–302, DOI: 10.​1139/​cgj-2013-0177 .CrossRef
    Du, Y. J., Jiang, N. J., Shen, S. L., and Jin, F. (2012). “Experimental investigation of influence of acid rain on leaching and hydraulic characteristics of cement-based solidified/stabilized lead contaminated clay.” Journal of Hazardous Materials, Vol. 225-226, No. 6, pp. 195–201, DOI: 10.​1016/​j.​jhazmat.​2012.​04.​072 .
    Du, Y. J., Shen, S. L., Liu, S. Y., and Hayashi, S. (2009). “Contaminant mitigating performance of Chinese standard municipal solid waste landfill liner systems.” Geotextiles and Geomembranes, Vol. 27, No. 3, pp. 232–239, DOI: 10.​1016/​j.​geotexmem.​2008.​11.​007 .CrossRef
    Evans, J. C. (1994). “Hydraulic conductivity of vertical cutoff walls.” ASTM Special Technical Publication, Vol. 1142, pp. 79–93.
    Evans, J. C., Costa, M. J., and Cooley, B. (1995). “The state-of-stress in soil-Cbentonite slurry trench cutoff walls.” Geoenvironment 2000: Characterization, Containment, Remediation, and Performance in Environmental Geotechnics, ASCE, pp. 1173–1191.
    Fan, R. D., Du, Y. J., Reddy, K. R., Liu, S. Y., and Yang, Y. L. (2014). “Compressibility and hydraulic conductivity of clayey soil mixed with calcium bentonite for slurry wall backfill: Initial assessment.” Applied Clay Science, Vol. 101, pp. 119–127, DOI: 10.1016/j.clay. 2014.07.026CrossRef
    Gleason, M. H., Daniel, D. E., and Eykholt, G. R. (1997). “Calcium and sodium bentonite for hydraulic containment applications.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 123, No. 5, pp. 438–445, DOI: 10.​1061/​(ASCE)1090-0241(1997)123:​5(438) .CrossRef
    Grim, R. E. (1968). Clay mineralogy (2nd ed.), McGraw-Hill, New York.
    Hong, C. S., Shackelford, C. D., and Malusis, M. A. (2012). “Consolidation and hydraulic conductivity of zeolite amended soil-bentonite backfills.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 138, No. 1, pp. 15–25, DOI: 10.​1061/​(ASCE)GT.​1943-5606.​0000566 .CrossRef
    Hunter, R. J. (1993). Introduction to modern colloid science (1st ed.), Oxford University Press, Oxford.
    Jo, H. Y., Benson, C. H., Shackelford, C. D., Lee, J. M., and Edil, T. B. (2005). “Long-term hydraulic conductivity of a geosynthetic clay liner permeated with inorganic salt solutions.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 131, No. 4, pp. 405–417, DOI: 10.​1061/​(ASCE)1090-0241(2005)131:​4(405) .CrossRef
    Jo, H. Y., Katsumi, T., Benson, C. H., and Edil, T. B. (2001). “Hydraulic conductivity and swelling of non-prehydrated GCLs permeated with single species salt solutions.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 127, No. 7, pp. 557–567, DOI: 10.1061/ (ASCE)1090-0241(2001)127:7(557).CrossRef
    Jung, H. S., Park, J. S., Lee, Y. J., Kim, S. K., Kong, J. Y., Chun, B. S., and Ryou, J. S. (2013). “Reduction of heavy metals and organic materials by atomized slag barrier in contaminated groundwater.” KSCE Journal of Civil Engineering, KSCE, Vol. 17, No. 7, pp. 1578–1586. DOI: 10.​1007/​s12205-013-0104-8 .CrossRef
    Katsumi, T., Kamon, M., Inui, T., and Araki, S. (2008). “Hydraulic barrier performance of SBM cut-off wall constructed by the trench cutting and re-mixing deep wall method.” Proceedings of GeoCongress 2008@Geotechnics of Waste Management and Remediation, ASCE, pp. 628–635, DOI: 10.​1061/​40970(309)79 .
    Khandelwal, A. and Rabideau, A. J. (2000). “Enhancement of soilbentonite barrier performance with the addition of natural humus.” Journal of Contaminant Hydrology, Vol. 45, Nos. 3–4, pp. 267–282. DOI: 10.​1016/​S0169-7722(00)00110-8 .CrossRef
    Kim, S. and Palomino, A. M. (2009). “Polyacrylamide-treated kaolin: A fabric study.” Applied Clay Science, Vol. 45, No. 4, pp. 270–279, DOI: 10.​1016/​j.​clay.​2009.​06.​009 .CrossRef
    Lagaly, G. (1989). “Principles of flow of kaolin and bentonite dispersions.” Applied Clay Science, Vol. 4, No. 2, pp. 105–123, DOI: 10.1016/ 0169-1317(89)90003-3.CrossRef
    Lagaly, G. and Ziesmer, S. (2003). “Colloid chemistry of clay minerals: The coagulation of montmorillonite dispersions.” Advances in Colloid and Interface Science, Vol. 100, pp. 105–128, DOI: 10.​1016/​S0001-8686(02)00064-7 .CrossRef
    Lambe, T. W. (1954). “The improvement of soil properties with dispersants.” Boston Society of Civil Engineers, Vol. 41, No. 2, pp. 184–207.
    Lim, J., Choi, H., and Stark, T. D. (2011). “Numerical modeling of diffusion for volatile organic compounds through composite landfill liner systems.” KSCE Journal of Civil Engineering, KSCE, Vol. 15, No. 6, pp. 1033–1039, DOI: 10.​1007/​s12205-011-1293-7 .CrossRef
    Ma, M. (2012). “The dispersive effect of sodium hexametaphosphate on kaolinite in saline water.” Clays and Clay Minerals, Vol. 60, No. 4, pp. 405–410, DOI: 10.​1346/​CCMN.​2012.​0600406 .CrossRef
    Malusis, M. A, Barben, E. J., and Evans, J. C. (2009). “Hydraulic conductivity and compressibility of soil-bentonite backfill amended with activated carbon.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 135, No. 5, pp. 664–672, DOI: 10.1061/(ASCE) GT.1943-5606.0000041.CrossRef
    Malusis, M. A., Maneval, J. E., Barben, E. J., Shackelford, C. D., and Daniels, E. R. (2010). “Influence of adsorption on phenol transport through soil-bentonite vertical barriers amended with activated carbon.” Journal of Contaminant Hydrology, Vol. 116, Nos. 1–4, pp. 58–72, DOI: 10.​1016/​j.​jconhyd.​2010.​06.​001 .CrossRef
    Mishra, A. K., Ohtsubo, M., Li, L. Y., Higashi, T., and Park, J. (2009). “Effect of salt of various concentrations on liquid limit, and hydraulic conductivity of different soil bentonite mixtures.” Environmental Geology, Vol. 57, No. 5, pp. 1145–1153, DOI: 10.​1007/​s00254-008-1411-0 .CrossRef
    Mitchell, J. K. and Soga, K. (2005). Fundamentals of soil benavior (3rd ed.), John Wiley and Sons, New Jersey.
    Olu-Owolabi, B. I. and Unuabonah, E. I. (2011). “Adsorption of Zn 2+ and Cu 2+ onto sulphate and phosphate-modified bentonite.” Applied Clay Science, Vol. 51, No. 1, pp. 170–173, DOI: 10.1016/j.clay. 2010.10.022.CrossRef
    Papo, A., Piani, L., and Ricceri, R. (2002). “Sodium tripolyphosphate and polyphosphate as dispersing agents for kaolin suspensions: Rheological characterization.” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 201, No. 1, pp. 219–230. DOI: 10.​1016/​S0927-7757(01)01024-X .CrossRef
    Penner, D. and Lagaly, G. (2001). “Influence of anions on the rheological properties of clay mineral dispersions.” Applied Clay Science, Vol. 19, No. 1, pp. 131–142, DOI: 10.​1016/​S0169-1317(01)00052-7 .CrossRef
    Rabideau, A. J., Shen, P. L, and Khandelwal, A. (1999). “Feasibility of amending slurry walls with zero-valent iron.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 125, No. 4, pp. 330–333, DOI: 10.​1061/​(ASCE)1090-0241(1999)125:​4(330) .CrossRef
    Shackelford, C. D., Benson, C. H., Katsumi, T., Edil, T. B., and Lin, L. (2000). “Evaluating the hydraulic conductivity of GCLs permeated with non-standard liquids.” Geotextiles and Geomembranes, Vol. 18, Nos. 2–4, pp. 133–161, DOI: 10.​1016/​S0266-1144(99)00024-2 .CrossRef
    Sharma, H. D. and Reddy, K. R. (2004). Geoenvironmental engineering: Site remediation, waste containment, and emerging waste management technologies, John Wiley & Sons, New York.
    Sridharan, A., Hayashi, S., and Du, Y. J. (2007). “Discussion of “Structure characteristics and mechanical properties of kaolinite soils. I. Surface charges and structural characterizations.” Canadian Geotechnical Journal, Vol. 44, No. 2, pp. 241–242, DOI: 10.​1139/​t06-133 .CrossRef
    Sridharan, A. and Prakash, K. (1999). “Influence of clay mineralogy and pore-medium chemistry on clay sediment formation.” Canadian Geotechnical Journal, Vol. 36, No. 5, pp. 961–966, DOI: 10.1139/t99-045.CrossRef
    Sridharan, A., Rao, S. M., and Murthy, N. S. (1988). “Liquid limit of kaolinitic soils.” Geotechnique, Vol. 38, No. 2, pp. 191–198, DOI: 10.​1680/​geot.​1988.​38.​2.​191 .CrossRef
    Tchillingarian, G. (1952). “Study of the dispersing agents.” Journal of Sedimentary Petrology, Vol. 22, No. 4, pp. 229–233.CrossRef
    Wang, Y. H. and Siu, W. K. (2006). “Structure characteristics and mechanical properties of kaolinite soils. II. Effects of structure on mechanical properties.” Canadian Geotechnical Journal, Vol. 43, No. 6, pp. 601–617, DOI: 10.​1139/​t06-027 .CrossRef
    Xue, Q., Li, J., and Liu, L. (2013). “Experimental study on anti-seepage grout made of leachate contaminated clay in landfill.” Applied Clay Science, Vol. 80, pp. 438–442, DOI: 10.​1016/​j.​clay.​2013.​06.​026 .CrossRef
    Yoon, J. S. and El Mohtar, C. S. (2012). “Time dependent rheological behavior of modified bentonite suspensions.” Proceedings of GeoCongress 2012: State of the Art and Practice in Geotechnical Engineering, ASCE, pp. 1195–1204, DOI: 10.​1061/​9780784412121.​123 .CrossRef
    Yukselen-Aksoy, Y. and Reddy, K. R. (2013). “Electrokinetic delivery and activation of persulfate for oxidation of PCBs in clayey soils.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 139, No. 1, pp. 175–184, DOI: 10.​1061/​(ASCE)GT.​1943-5606.​0000744 .CrossRef
  • 作者单位:Yan-Jun Du (1)
    Yu-Ling Yang (1)
    Ri-Dong Fan (1)
    Fei Wang (2)

    1. Institute of Geotechnical Engineering, Southeast University, Nanjing, 210096, China
    2. Institute of Geotechnical Engineering, Southeast University, Nanjing, Jiangsu, China, 210096
  • 刊物类别:Engineering
  • 刊物主题:Civil Engineering
    Industrial Pollution Prevention
    Automotive and Aerospace Engineering and Traffic
    Geotechnical Engineering
  • 出版者:Korean Society of Civil Engineers
  • ISSN:1976-3808
文摘
Soil-bentonite slurry-trench wall, usually consisting of sandy soil and Na-bentonite, is used extensively as in-situ engineered barriers for contaminant containment. Clayey soil/Ca-bentonite may be considered as an alternative backfill when Na-bentonite is scarce at some sites. Adding trace amount of phosphate dispersant to clayey soil/Ca-bentonite backfills may be advantageous to maintain the deflocculated structure of bentonite, which is benefit to minimizing increases in hydraulic conductivity of the backfills when attacked by contaminants. However, studies on the application of phosphate dispersants to the clayey soil/Ca-bentonite backfills are very limited. A series of laboratory tests are conducted for the measurements of liquid limit, sediment volume and apparent viscosity of the phosphate dispersant-amended backfills. The phosphate dispersants tested are sodium hexametaphosphate, sodium tripolyphosphate and sodium pyrophosphate with contents ranging from 0 to 2%. The results demonstrate that the values of liquid limit, sediment volume and apparent viscosity of the backfills decrease sharply when the dispersant content is relatively low (≤0.1 to 0.5%), while they change slightly at relatively high dispersant content (> 0.1 to 0.5%). The type and content of the dispersant as well as Ca-bentonite content have significant effects on the liquid limit, sediment volume and apparent viscosity of the backfill. The sodium hexametaphosphate is shown to have higher dispersibility compared with the others in terms of greater reduction in apparent viscosity, and its optimum content is suggested in a range of 0.1% to 0.5%. A power function is proposed which well quantifies the relationship between the measured apparent viscosity and liquid limit. Keywords dispersant liquid limit soil-bentonite slurry wall sedimentation

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700