用户名: 密码: 验证码:
Modern problems of geochemical and U-Pb geochronological studies of zircon in oceanic rocks
详细信息    查看全文
  • 作者:Yu. A. Kostitsyn ; E. A. Belousova ; S. A. Silant’ev…
  • 关键词:zircon ; U ; Pb dating ; oceanic rocks ; age ; mid ; ocean ridge
  • 刊名:Geochemistry International
  • 出版年:2015
  • 出版时间:September 2015
  • 年:2015
  • 卷:53
  • 期:9
  • 页码:759-785
  • 全文大小:3,733 KB
  • 参考文献:J. Aléon, M. Chaussidon, B. Marty, L. Schütz, and R. Jaenicke, “Oxygen isotopes in single micrometer-sized quartz grains: tracing the source of Saharan dust over long-distance atmospheric transport,-Geochim. Cosmochim. Acta 66, 3351-365 (2002).CrossRef
    L. Ya. Aranovich, T. F. Zinger, N. S. Bortnikov, V. E. Sharkov, and A. V. Antonov, “Zircon in gabbroids from the axial zone of the Mid-Atlantic Ridge, Markov Deep, 6 N: correlation of geochemical features with petrogenetic processes,-Petrology 21(1), 1-6 (2013).CrossRef
    B. Yu. Astafiev, S. G. Skublov, V. A. Glebovitskii, I. M. Gembitskaya, O. A. Voinova, and O. A. Levchenkov, “Geochemistry of metasomatic zircons from the Terskii Greenstone Belt,-Dokl. Earth Sci. 427(1), 840-45 (2009).CrossRef
    A. G. Baines, M. J. Cheadle, B. E. John, C. B. Grimes, J. J. Schwartz, and J. L. Wooden, “SHRIMP Pb/U zircon ages constrain gabbroic crustal accretion at Atlantis Bank on the ultraslow-spreading Southwest Indian Ridge,-Earth Planet. Sci. Lett. 287, 540-50 (2009).CrossRef
    E. A. Belousova, W. L. Griffin, S. Y. O’Reilly, and N. I. Fisher, “Igneous zircon: trace element composition as an indicator of source rock type,-Contrib. Mineral. Petrol. 143, 602-22 (2002).CrossRef
    V. Beltenev, V. Ivanov, I. Rozhdestvenskaya, et al. “A new hydrothermal field at 13°30-N on the Mid-Atlantic Ridge,-InterRidge News 16, 9-0 (2007).
    V. Beltenev, V. Ivanov, I. Rozhdestvenskaya, et al., “New data about hydrothermal fields on the Mid-Atlantic Ridge between 11-4° N: 32nd Cruise of R/V Professor Logatchev,-InterRidge News. 18, 14-8 (2009).
    P. Betzer, K. Carder, R. Duce, J. Merrill, N. Tindale, M. Uematsu, D. Costello, R. Young, R. Feely, and J. Breland, “Long-range transport of giant mineral aerosol particles,-Nature 336, 568-71 (1988).CrossRef
    E. V. Bibikova, The Uranium—Lead Geochronology of the Early Stages of Evolution of Ancient Shields (Nauka, Moscow, 1989) [in Russian].
    E. V. Bibikova, S. N. Shilobreeva, T. V. Gracheva, and V. A. Makarov, “Experimental study of U–Pb system behavior in zircon in melt under different physicochemical conditions,-Geokhimiya 34 (8), 1100-109 (1995).
    Yu. A. Bogdanov, N. S. Bortnikov, I. V. Vikent’ev, et al., “A new type of modern mineral-forming system: black smokers of the hydrothermal field at 14°45-N latitude, Mid-Atlantic Ridge,-Geol. Ore Dep. 39 (1), 68-0(1997).
    E. Bonatti and K. Crane, “Oscillatory spreading explanation of anomalously old uplifted crust near oceanic transforms,-Nature 300, 343-45 (1982).CrossRef
    E. Bonatti, D. Brunelli, W. R. Buck, A. Cipriani, P. Fabretti, V. Ferrante, L. Gasperini, and M. Ligi, “Flexural uplift of a lithospheric slab near the Vema transform (Central Atlantic): timing and mechanisms,-Earth Planet. Sci. Lett. 240, 642-55 (2005).CrossRef
    N. S. Bortnikov, G. N. Savel’eva, D. I. Matukov, S. A. Sergeev, N. G. Berezhnaya, E. N. Lepekhina, and A. V. Antonov, “The zircon age of plagiogranites and gabbros based on SHRIMP data: Pleistocene intrusion in the MAR rift valley, 5°30.6′-°32.4-N,-Dokl. Earth Sci. 404 (1), 1054-058 (2005).
    N. S. Bortnikov, E. V. Sharkov, O. A. Bogatikov, T. F. Zinger, E. N. Lepekhina, A. V. Antonov, and S. A. Sergeev, “Finds of young and ancient zircons in gabbroids of the Markov Deep, Mid-Atlantic Ridge, 5°54′-°02.2-N (results of SHRIMP-II U–Pb dating): implication for deep geodynamics of modern oceans,-Dokl. Earth Sci. 421 (5), 859-66 (2008).CrossRef
    A. J. M. Bory, P. E. Biscaye, A. Svensson, and F. E. Grousset, “Seasonal variability in the origin of recent atmospheric mineral dust at NorthGRIP, Greenland,-Earth Planet. Sci. Lett. 196, 123-34 (2002).CrossRef
    J. R. Cann, D. K. Blackman, D. K. Smith, E. McAllister, B. Janssen, S. Mello, E. Avgerinos, A. R. Pascoe, and J. Escartin, “Corrugated slip surfaces formed at ridgetransform intersections on the Mid-Atlantic Ridge,-Nature 385, 329-32 (1997).CrossRef
    D. J. Cherniak and E. B. Watson, “Pb diffusion in zircon,-Chem. Geol. 172, 5-4 (2000).CrossRef
    D. J. Cherniak, J. M. Hanchar, and E. B. Watson, “Diffusion of tetravalent cations in zircon,-Contrib. Mineral. Petrol. 127, 383-90 (1997).CrossRef
    S. Clement, W. Compston, and G. Newstead, “Design of a large high resolution ion microprobe,-in Int. Conf. SIMS (Munster, 1977), p. 17.
    F. Corfu, J. M. Hanchar, P. W. O. Hoskin, and P. Kinny, “Atlas of zircon textures,-Rev. Mineral. Geochem. 53, 469-00 (2003).CrossRef
    J. Crank, The Mathematics of Diffusion, 2nd Ed. (Clarendon Press, Oxford, 1975).
    N. M. Evensen, P. J. Hamilton, and R. K. O’Nions, “Rare earth element abundances in chondritic meteorites,-Geochim. Cosmochim. Acta 42, 1199-212 (1978).CrossRef
    R. Feng, N. Machado, and J. Ludden, “Lead geochronology of zircon by laser probe-inductively coupled plasma mass spectrometry (LP-ICPMS),-Geochim. Cosmochim. Acta 57, 3479-486 (1993).CrossRef
    G. B. Fershtater, A. A. Krasnobaev,
  • 作者单位:Yu. A. Kostitsyn (1)
    E. A. Belousova (2)
    S. A. Silant’ev (1)
    N. S. Bortnikov (3)
    M. O. Anosova (1)

    1. Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, ul. Kosygina 19, Moscow, 119991, Russia
    2. GEMOC ARC National Key Centre, Department of Earth and Planetary Sciences, Macquarie University, NSW 2109, Sydney, Australia
    3. Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences, Staromonetnyi per. 35, Moscow, 119017, Russia
  • 刊物主题:Geochemistry;
  • 出版者:Springer US
  • ISSN:1556-1968
文摘
We present results of zircon LA-ICP-MS U–Pb, Lu–Hf, and trace-element study in combination with whole-rock Sm-Nd and Rb-Sr isotope data on the magmatic rocks of the Markov Deep and Ashadze hydrothermal field (Mid-Atlantic Ridge). Zircon from three gabbronorite samples in the Markov Deep defined an U–Pb ages between 0.90 ± 0.02 and 2.00 ± 0.05 Ma, with the youngest age found in the deepest sample. Zircons from four samples of gabbros and trondhjemites of the Ashadze Field have identical ages: from 1.04 ± 0.07 to 1.12 ± 0.09 Ma. Plagioclase troctolite from the Markov Deep (sample I-1069/19) contains exotic zircon grains with ages widely ranging from 90 Ma to 3.2 Ga, which is inconsistent with age of the rocks in the Mid-Atlantic Ridge. Several hypotheses are discussed to explain the origin of such exotic grains, in particular, their formation at mantle depths, or reaching these depths with subducted crust, and others. Experimental study of zirconium solubility shows that the mafic and ultramafic melts could be oversaturated with respect to zirconium only at unrealistically high contents, which usually do not occur in the corresponding rocks. Entrapped xenogenic zircon must be dissolved in the mafic and ultramafic melts and its finds in these rocks presumably indicate its disequilibrium precipitation. Zircon could be formed in the intrusive mafic rocks at the final stages of fractional crystallization, which explains the presence of own zircon in gabbroids. Zircon is very stable in crustal magmatic processes, especially at lowered activity of alkalis, but almost instantly (on geological scale) loses radiogenic lead by diffusion way under upper mantle conditions (1300-500°C). While applying REE distribution for interpreting zircon origin, as many as possible elements should be analyzed to discriminate between intrinsic zircon element distribution and anomalies caused by defects in its structure. Keywords zircon U-Pb dating oceanic rocks age mid-ocean ridge

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700