用户名: 密码: 验证码:
Identification of the disease-associated genes in periodontitis using the co-expression network
详细信息    查看全文
  • 作者:G. P. Sun ; T. Jiang ; P. F. Xie ; J. Lan
  • 关键词:periodontitis ; differentially expressed genes ; co ; expression
  • 刊名:Molecular Biology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:50
  • 期:1
  • 页码:124-131
  • 全文大小:1,164 KB
  • 参考文献:1.Duran-Pinedo A.E., Paster B., Teles R., Frias-Lopez J. 2011. Correlation network analysis applied to complex biofilm communities. PloS ONE. 6, e28438.CrossRef
    2.Repeke C.E., Ferreira S.B., Claudino M., Silveira E.M., de Assis G.F., Avila-Campos M.J., Silva J.S., Garlet G.P. 2010. Evidences of the cooperative role of the chemokines CCL3, CCL4 and CCL5 and its receptors CCR1+ and CCR5+ in RANKL+ cell migration throughout experimental periodontitis in mice. Bone. 46, 1122–1130.CrossRef PubMed
    3.Yang L., Zhang Y., Dong R., Peng L., Liu X., Wang Y., Cheng X. 2010. Effects of adenoviral-mediated coexpression of bone morphogenetic protein-7 and insulinlike growth factor-1 on human periodontal ligament cells. J. Periodont. Res. 45, 532–540.PubMed
    4.Del Sol A., Balling R., Hood L., Galas D. 2010. Diseases as network perturbations. Curr. Opin. Biotechnol. 21, 566–571.CrossRef PubMed
    5.Sarajlic A., Janjic V., Stojkovic N., Radak D., Pržulj N. 2013. Network topology reveals key cardiovascular disease genes. PLoS ONE. 8, e71537.CrossRef
    6.Goh K.-I., Choi I.-G. 2012. Exploring the human diseasome: the human disease network. Brief. Funct. Genomics. 11, 533–542.CrossRef PubMed
    7.Janjic V., Pržulj N. 2012. Biological function through network topology: a survey of the human diseasome. Brief. Funct. Genomics. 11, 522–532.CrossRef PubMed
    8.Aung H.H., Tsoukalas A., Rutledge J.C., Tagkopoulos I. 2014. A systems biology analysis of brain microvascular endothelial cell lipotoxicity. BMC Syst. Biol. 8, 80.CrossRef PubMed PubMedCentral
    9.Miller J.A., Oldham M.C., Geschwind D.H. 2008. A systems level analysis of transcriptional changes in Alzheimer’s disease and normal aging. J. Neurosci. 28, 1410–1420.CrossRef PubMed PubMedCentral
    10.Ray M., Zhang W. 2010. Analysis of Alzheimer’s disease severity across brain regions by topological analysis of gene co-expression networks. BMC Syst. Biol. 4, 136.CrossRef PubMed PubMedCentral
    11.Xing S.M., Wang J., He X., Lai J., Shen L., Chen D., Fu K., Tan J. 2014. Identification of disease-related miRNAs based on co-expression network in spinal cord injury. Int. J. Neurosci. 125 (4), 270–276.CrossRef PubMed
    12.Papapanou P.N., Behle J.H., Kebschull M., Celenti R., Wolf D.L., Handfield M., Pavlidis P., Demmer R.T. 2009. Subgingival bacterial colonization profiles correlate with gingival tissue gene expression. BMC Microbiol. 9, 221.CrossRef PubMed PubMedCentral
    13.Gautier L., Cope L., Bolstad B.M., Irizarry R.A. 2004. Affy-analysis of Affymetrix GeneChip data at the probe level. Bioinformatics. 20, 307–315.CrossRef PubMed
    14.Irizarry R.A., Bolstad B.M., Collin F., Cope L.M., Hobbs B., Speed T.P. 2003. Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 31, e15.CrossRef
    15.Zhang L., Miles M.F., Aldape K.D. 2003. A model of molecular interactions on short oligonucleotide microarrays. Nat. Biotechnol. 21, 818–821.CrossRef PubMed
    16.Bourgon R., Gentleman R., Huber W. 2010. Independent filtering increases detection power for highthroughput experiments. Proc. Natl. Acad. Sci. U. S. A. 107, 9546–9551.CrossRef PubMed PubMedCentral
    17.Smyth G.K. 2005. Limma: Linear models for microarray data. In: Bioinformatics and Computational Biology Solutions Using R and Bioconductor Statistics for Biology and Health. Eds. Gentleman R., Carey V.J., Huber W., Irizarry R.A., Dudoit S. New York: Spring Press, pp. 397–420.CrossRef
    18.Benjamini Y., Yekutieli D. 2001. The control of the false discovery rate in multiple testing under dependency. Ann. Statist. 29, 1165–1188.CrossRef
    19.Dawson J.A., Kendziorski C. 2012. An empirical Bayesian approach for identifying differential coexpression in high-throughput experiments. Biometrics. 68, 455–465.CrossRef PubMed PubMedCentral
    20.Vaquerizas J.M., Kummerfeld S.K., Teichmann S.A., Luscombe N.M. 2009. A census of human transcription factors: Function, expression and evolution. Nat. Rev. Genet. 10, 252–263.CrossRef PubMed
    21.Wuchty S., Stadler P.F. 2003. Centers of complex networks. J. Theor. Biol. 223, 45–53.CrossRef PubMed
    22.Joy M.P., Brock A., Ingber D.E., Huang S. 2005. Highbetweenness proteins in the yeast protein interaction network. J. BioMed. Biotechnol. 2005, 96–103.CrossRef PubMed PubMedCentral
    23.Nepusz T., Yu H., Paccanaro A. 2012. Detecting overlapping protein complexes in protein–protein interaction networks. Nat. Methods. 9, 471–472.CrossRef PubMed PubMedCentral
    24.Kruskal W.H., Wallis W.A. 1952. Use of ranks in onecriterion variance analysis. J. Am. Stat. Assoc. 47, 583–621.CrossRef
    25.Dunn O.J. 1964. Multiple comparisons using rank sums. Technometrics. 6, 241–252.CrossRef
    26.Ashburner M., Ball C.A., Blake J.A., Botstein D., Butler H., Cherry J.M., Davis A.P., Dolinski K., Dwight S.S., Eppig J.T. 2000. Gene ontology: Tool for the unification of biology. Nat. Genet. 25, 25–29.CrossRef PubMed PubMedCentral
    27.Hosack D.A., Dennis G., Sherman B.T., Lane H.C., Lempicki R.A. 2003. Identifying biological themes within lists of genes with EASE. Genome Biol. 4, R70.CrossRef PubMed PubMedCentral
    28.Ravasi T., Suzuki H., Cannistraci C.V., Katayama S., Bajic V.B., Tan K., Akalin A., Schmeier S., Kanamori- Katayama M., Bertin N. 2010. An atlas of combinatorial transcriptional regulation in mouse and man. Cell. 140, 744–752.CrossRef PubMed
    29.Hu J., Su P., Jia M., Wu X., Zhang H., Li W., Zhou G. 2014. TRPS1 expression promotes angiogenesis and affects VEGFA expression in breast cancer. Exp. Biol. Med. 239, 423–429.CrossRef
    30.Berga-Bolaños R., Alberdi M., Buxadé M., Aramburu J., López-Rodríguez C. 2013. NFAT5 induction by the pre- T-cell receptor serves as a selective survival signal in T-lymphocyte development. Proc. Natl. Acad. Sci. U. S. A. 110, 16091–16096.CrossRef PubMed PubMedCentral
    31.Sturtzel C., Testori J., Schweighofer B., Bilban M., Hofer E. 2014. The transcription factor MEF2C negatively controls angiogenic sprouting of endothelial cells depending on oxygen. PLoS ONE. 9, e101521.CrossRef
    32.Molano I., Mathenia J., Ruiz P., Gilkeson G., Zhang X. 2010. Decreased expression of Fli-1 in bone marrowderived haematopoietic cells significantly affects disease development in Murphy Roths Large/lymphoproliferation (MRL/lpr) mice. Clin. Exp. Immunol. 160, 275–282.CrossRef PubMed PubMedCentral
  • 作者单位:G. P. Sun (1)
    T. Jiang (2)
    P. F. Xie (3)
    J. Lan (4)

    1. Department of Stomatology, the Third Hospital of Ji’nan, Ji’nan, Shandong, China
    2. General Department, Ji’nan Stomatological Hospital, Ji’nan, Shandong, China
    3. Department of Oral and Maxillofacial Surgery, Ji’nan Stomatological Hospital, Ji’nan, Shandong, China
    4. Department of Prosthodontics, College of Stomatology, Shandong University, Ji’nan, Shandong, China
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Life Sciences
    Biochemistry
    Human Genetics
    Russian Library of Science
  • 出版者:MAIK Nauka/Interperiodica distributed exclusively by Springer Science+Business Media LLC.
  • ISSN:1608-3245
文摘
The aim of this study was to investigate the disease-associated genes in periodontitis. In the present experiments, the topological analysis of the differential co-expression network was proposed. Using the GSE16134 dataset downloaded from the European Molecular Biology Laboratory-European Bioinformatics Institute, a co-expression network was constructed after the differentially expressed genes (DEGs) were identified between the diseased (242 samples) and healthy (69 samples) gingival tissues from periodontitis patients. The topological properties of the modules obtained from the network as well as an analysis of transcription factors (TFs) were used to determine the disease-associated genes. The gene ontology and pathway enrichment analysis was performed to investigate the underlying mechanisms of these disease related genes. A total of 524 DEGs, including 19 TFs were identified and a co-expression network with 2569 edges was obtained. Among the 7 modules gained in the network, the TFs (ZNF215, ZEN273, NFAT5, TRPS1, MEF2C and FLI1) were considered to be important in periodontitis. The functional and pathway enrichment analysis revealed that the DEGs were highly involved in the immune system. The co-expression network analysis and TFs identified in periodontitis may provide opportunities for biomarker development and novel insights into the therapeutics of periodontitis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700