用户名: 密码: 验证码:
Protein kinase C mediated pHi-regulation of ROMK1 channels via a phosphatidylinositol-4,5-bisphosphate-dependent mechanism
详细信息    查看全文
  • 作者:Po-Tsang Huang (1)
    Chien-Hsing Lee (234)
    Horng-Huei Liou (25) hhl@ntu.edu.tw
    Kuo-Long Lou (1678) kllou@ntu.edu.tw
  • 关键词:PKC – ; ROMK1 channel – ; PIP2 – ; Intracellular proton – ; Effective pK a – ; PMA
  • 刊名:Journal of Molecular Modeling
  • 出版年:2012
  • 出版时间:July 2012
  • 年:2012
  • 卷:18
  • 期:7
  • 页码:2929-2941
  • 全文大小:892.2 KB
  • 参考文献:1. Sugimoto Y, Namba T, Shigemoto R, Negishi M, Ichikawa A, Narumiya S (1994) Distinct cellular localization of mRNAs for three subtypes of prostaglandin E receptor in kidney. Am J Physiol 266:F823–F828
    2. Zeng WZ, Li XJ, Hilgemann DW, Huang CL (2003) Protein kinase C inhibits ROMK1 channel activity via a phosphatidylinositol 4,5-bisphosphate-dependent mechanism. J Biol Chem 278:16852–16856. doi:
    3. Hebert SC, Desir G, Giebisch G, Wang W (2005) Molecular diversity and regulation of renal potassium channels. Physiol Rev 85:319–371. doi:
    4. Cantone A, Yang X, Yan Q, Giebisch G, Hebert SC, Wang T (2008) Mouse model of type II Bartter’s syndrome. I. Upregulation of thiazide-sensitive Na-Cl cotransport activity. Am J Physiol Renal Physiol 294:F1366–F1372. doi:
    5. Lin D, Sterling H, Lerea KM, Giebisch G, Wang WH (2002) Protein kinase C (PKC)-induced phosphorylation of ROMK1 is essential for the surface expression of ROMK1 channels. J Biol Chem 277:44278–44284. doi:
    6. Sterling H, Lin DH, Chen YJ, Wei Y, Wang ZJ, Lai J, Wang WH (2004) PKC expression is regulated by dietary K intake and mediates internalization of SK channels in the CCD. Am J Physiol Renal Physiol 286:F1072–F1078. doi:
    7. Wei Y, Zavilowitz B, Satlin LM, Wang WH (2007) Angiotensin II inhibits the ROMK-like small conductance K channel in renal cortical collecting duct during dietary potassium restriction. J Biol Chem 282:6455–6462. doi:
    8. Choe H, Zhou H, Palmer LG, Sackin H (1997) A conserved cytoplasmic region of ROMK modulates pH sensitivity, conductance, and gating. Am J Physiol 273:F516–F529
    9. Lee CH, Huang PT, Lou KL, Liou HH (2008) Functional and structural characterization of PKA-mediated pHi gating of ROMK1 channels. J Mol Graph Model 27:332–341. doi:
    10. Leung YM, Zeng WZ, Liou HH, Solaro CR, Huang CL (2000) Phosphatidylinositol 4,5-bisphosphate and intracellular pH regulate the ROMK1 potassium channel via separate but interrelated mechanisms. J Biol Chem 275:10182–10189
    11. Liou HH, Zhou SS, Huang CL (1999) Regulation of ROMK1 channel by protein kinase A via a phosphatidylinositol 4,5-bisphosphate-dependent mechanism. Proc Natl Acad Sci USA 96:5820–5825
    12. McNicholas CM, MacGregor GG, Islas LD, Yang Y, Hebert SC, Giebisch G (1998) pH-dependent modulation of the cloned renal K + channel, ROMK. Am J Physiol 275:F972–F981
    13. Leng Q, MacGregor GG, Dong K, Giebisch G, Hebert SC (2006) Subunit-subunit interactions are critical for proton sensitivity of ROMK: evidence in support of an intermolecular gating mechanism. Proc Natl Acad Sci USA 103:1982–1987. doi:
    14. Wang WH, Giebisch G (1991) Dual modulation of renal ATP-sensitive K + channel by protein kinases A and C. Proc Natl Acad Sci USA 88:9722–9725
    15. Huang CL, Feng S, Hilgemann DW (1998) Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gbetagamma. Nature 391:803–806. doi:
    16. Proks P, Capener CE, Jones P, Ashcroft FM (2001) Mutations within the P-loop of Kir6.2 modulate the intraburst kinetics of the ATP-sensitive potassium channel. J Gen Physiol 118:341–353
    17. Minami K, Gereau RWT, Minami M, Heinemann SF, Harris RA (1998) Effects of ethanol and anesthetics on type 1 and 5 metabotropic glutamate receptors expressed in Xenopus laevis oocytes. Mol Pharmacol 53:148–156
    18. Lee CH, Lee CY, Tsai TS, Liou HH (2008) PKA-mediated phosphorylation is a novel mechanism for levetiracetam, an antiepileptic drug, activating ROMK1 channels. Biochem Pharmacol 76:225–235. doi:
    19. Hilgemann DW, Ball R (1996) Regulation of cardiac Na+, Ca2+ exchange and KATP potassium channels by PIP2. Science 273:956–959
    20. Ho K, Nichols CG, Lederer WJ, Lytton J, Vassilev PM, Kanazirska MV, Hebert SC (1993) Cloning and expression of an inwardly rectifying ATP-regulated potassium channel. Nature 362:31–38. doi:
    21. Lee CH, Tsai TS, Liou HH (2008) Gabapentin activates ROMK1 channels by a protein kinase A (PKA)-dependent mechanism. Br J Pharmacol 154:216–225. doi:
    22. Macica CM, Yang Y, Lerea K, Hebert SC, Wang W (1998) Role of the NH2 terminus of the cloned renal K + channel, ROMK1, in arachidonic acid-mediated inhibition. Am J Physiol 274:F175–F181
    23. Zeng WZ, Liou HH, Krishna UM, Falck JR, Huang CL (2002) Structural determinants and specificities for ROMK1-phosphoinositide interaction. Am J Physiol Renal Physiol 282:F826–F834. doi:
    24. Wang WH (2006) Regulation of ROMK (Kir1.1) channels: new mechanisms and aspects. Am J Physiol Renal Physiol 290:F14–F19. doi:
    25. Rapedius M, Fowler PW, Shang L, Sansom MS, Tucker SJ, Baukrowitz T (2007) H bonding at the helix-bundle crossing controls gating in Kir potassium channels. Neuron 55:602–614. doi:
    26. Rapedius M, Haider S, Browne KF, Shang L, Sansom MS, Baukrowitz T, Tucker SJ (2006) Structural and functional analysis of the putative pH sensor in the Kir1.1 (ROMK) potassium channel. EMBO Rep 7:611–616. doi:
    27. Sackin H, Nanazashvili M, Li H, Palmer LG, Walters DE (2007) External K activation of Kir1.1 depends on the pH gate. Biophys J 93:L14–L16. doi:
    28. Levitan IB (1994) Modulation of ion channels by protein phosphorylation and dephosphorylation. Annu Rev Physiol 56:193–212. doi:
    29. Welling PA, Ho K (2009) A comprehensive guide to the ROMK potassium channel: form and function in health and disease. Am J Physiol Renal Physiol 297:F849–F863. doi:
    30. Zhang W, Zitron E, Bloehs R, Muller-Krebs S, Scholz E, Zeier M, Katus H, Karle C, Schwenger V (2008) Dual regulation of renal Kir7.1 potassium channels by protein Kinase A and protein Kinase C. Biochem Biophys Res Commun 377:981–986. doi:
    31. Tapper H, Sundler R (1995) Protein kinase C and intracellular pH regulate zymosan-induced lysosomal enzyme secretion in macrophages. J Leukoc Biol 58:485–494
    32. Ho AK, Ling A, Chik CL (2000) Intracellular pH on translocation of protein kinase C isozymes in rat pinealocytes. J Neurochem 75:1845–1851
    33. Galkina SI, Sud’ina GF, Dergacheva GB, Margolis LB (1995) Regulation of intracellular pH by cell-cell adhesive interactions. FEBS Lett 374:17–20
    34. Takeishi Y, Ping P, Bolli R, Kirkpatrick DL, Hoit BD, Walsh RA (2000) Transgenic overexpression of constitutively active protein kinase C epsilon causes concentric cardiac hypertrophy. Circ Res 86:1218–1223
    35. Spassov VZ, Yan L, Szalma S (2002) Introducing an implicit membrane in generalized born/solvent accessibility continuum solvent. J Phys Chem B 106:8726–8738
    36. Ma HP, Eaton DC (2005) Acute regulation of epithelial sodium channel by anionic phospholipids. J Am Soc Nephrol 16:3182–3187. doi:
    37. Nasuhoglu C, Feng S, Mao Y, Shammat I, Yamamato M, Earnest S, Lemmon M, Hilgemann DW (2002) Modulation of cardiac PIP2 by cardioactive hormones and other physiologically relevant interventions. Am J Physiol Cell Physiol 283:C223–C234. doi:
    38. DeCoy DL, Snapper JR, Breyer MD (1995) Anti sense DNA down-regulates proteins kinase C-epsilon and enhances vasopressin-stimulated Na + absorption in rabbit cortical collecting duct. J Clin Invest 95:2749–2756. doi:
    39. Wilborn TW, Schafer JA (1996) Differential expression of PKC isoforms in fresh and cultured rabbit CCD. Am J Physiol 270:F766–F775
    40. Giebisch G, Wang W (2000) Renal tubule potassium channels: function, regulation and structure. Acta Physiol Scand 170:153–173
  • 作者单位:1. Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan2. National Taiwan University Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan3. Basic Medical Science Education Center, Fooyin University, Kaohsiung, Taiwan4. Kaohsiung Medicine University, School of Pharmacy, Kaohsiung, Taiwan5. Division of Neurology, National Taiwan University Hospital, Taipei, Taiwan6. Graduate Institutes of Oral Biology, Medical College, National Taiwan University, Taipei, Taiwan7. Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan8. Membrane Protein Structure and Function Core Laboratory, Center for Biotechnology, National Taiwan University, Taipei, Taiwan
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Computer Applications in Chemistry
    Biomedicine
    Molecular Medicine
    Health Informatics and Administration
    Life Sciences
    Computer Application in Life Sciences
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:0948-5023
文摘
The protein kinase C (PKC) pathway is important for the regulation of K+ transport. The renal outer medullar K+ (ROMK1) channels show an exquisite sensitivity to intracellular protons (pH i ) (effective pK a approximately 6.8) and play a key role in K+ homeostasis during metabolic acidosis. Our molecular dynamic simulation results suggest that PKC-mediated phosphorylation on Thr-193 may disrupt the PIP2-channel interaction via a charge–charge interaction between Thr-193 and Arg-188. Therefore, we investigated the role of PKC and pH i in regulation of ROMK1 channel activity using a giant patch clamp with Xenopus oocytes expressing wild-type and mutant ROMK1 channels. ROMK1 channels pre-incubated with the PKC activator phorbol-12-myristate-13-acetate exhibited increased sensitivity to pH i (effective pK a shifted to pH approximately 7.0). In the presence of GF109203X—a PKC selective inhibitor—the effective pK a for inhibition of ROMK1 channels by pH i decreased (effective pK a shifted to pH approximately 6.5). The pH i sensitivity of ROMK1 channels mediated by PKC appeared to be dependent of PIP2 depletion. The giant patch clamp together with site direct mutagenesis revealed that Thr-193 is the phosphorylation site on PKC that regulates the pH i sensitivity of ROMK1 channels. Mutation of PKC-induced phosphorylation sites (T193A) decreases the pH i sensitivity and increases the interaction of channel-PIP2. Taken together, these results provide new insights into the molecular mechanisms underlying the pH i gating of ROMK1 channel regulation by PKC.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700