用户名: 密码: 验证码:
Genetic Polymorphisms of Metabolic Enzymes and the Pharmacokinetics of Indapamide in Taiwanese Subjects
详细信息    查看全文
  • 作者:Teng-Hsu Wang (1)
    Cheng-Huei Hsiong (1)
    Hsin-Tien Ho (6)
    Tung-Yuan Shih (1)
    San-Jan Yen (1)
    Hui-Hung Wang (2)
    Jer-Yuarn Wu (2) (3)
    Benjamin Pei-Chung Kuo (4)
    Yuan-Tsong Chen (2) (5)
    Shung-Tai Ho (7)
    Oliver Yoa-Pu Hu (1)
  • 关键词:indapamide ; metabolic enzymes ; pharmacogenetics ; pharmacokinetics ; SNPs
  • 刊名:The AAPS Journal
  • 出版年:2014
  • 出版时间:March 2014
  • 年:2014
  • 卷:16
  • 期:2
  • 页码:206-213
  • 全文大小:279 KB
  • 参考文献:1. Lee C, Morton CC. Structural genomic variation and personalized medicine. N Engl J Med. 2008;358(7):740-. CrossRef
    2. Ma MK, Woo MH, McLeod HL. Genetic basis of drug metabolism. Am J Health Syst Pharm. 2002;59(21):2061-.
    3. Wang KS, Zahn LE, Favor J, Huang KM, Stambolian D. Genetic and phenotypic analysis of / T cm, a mutation affecting early eye development. Mamm Genome. 2005;16(5):332-3. CrossRef
    4. Sakurai Y, Hirayama M, Hashimoto M, Tanaka T, Hasegawa S, Irie S, / et al. Population pharmacokinetics and proton pump inhibitory effects of intravenous lansoprazole in healthy Japanese males. Biol Pharm Bull. 2007;30(12):2238-3. CrossRef
    5. Tomalik-Scharte D, Lazar A, Fuhr U, Kirchheiner J. The clinical role of genetic polymorphisms in drug-metabolizing enzymes. Pharmacogenomics J. 2008;8(1):4-5. CrossRef
    6. Gardiner SJ, Begg EJ. Pharmacogenetics, drug-metabolizing enzymes, and clinical practice. Pharmacol Rev. 2006;58(3):521-0. CrossRef
    7. Yasuda SU, Zhang L, Huang SM. The role of ethnicity in variability in response to drugs: focus on clinical pharmacology studies. Clin Pharmacol Ther. 2008;84(3):417-3. CrossRef
    8. Lin M, Chu CC, Chang SL, Lee HL, Loo JH, Akaza T, / et al. The origin of Minnan and Hakka, the so-called “Taiwanese- inferred by HLA study. Tissue Antigens. 2001;57(3):192-. CrossRef
    9. Pattaro C, Ruczinski I, Fallin DM, Parmigiani G. Haplotype block partitioning as a tool for dimensionality reduction in SNP association studies. BMC Genomics. 2008;9(1):405. CrossRef
    10. Sethupathy P, Giang H, Plotkin JB, Hannenhalli S. Genome-wide analysis of natural selection on human / cis-elements. PLoS One. 2008;3(9):e3137. CrossRef
    11. Hunter DJ, Khoury MJ, Drazen JM. Letting the genome out of the bottle—will we get our wish? N Engl J Med. 2008;358(2):105-. CrossRef
    12. Ding C, Jin S. High-throughput methods for SNP genotyping. Methods Mol Biol. 2009;578:245-4. CrossRef
    13. Ragoussis J. Genotyping technologies for genetic research. Annu Rev Genomics Hum Genet. 2009;10(1):117-3. CrossRef
    14. Reilly RF, Peixoto AJ, Desir GV. The evidence-based use of thiazide diuretics in hypertension and nephrolithiasis. Clin J Am Soc Nephrol. 2010;5(10):1893-03. CrossRef
    15. Chan TY. Indapamide-induced severe hyponatremia and hypokalemia. The Annals of Pharmacotherapy. 1995;29(11):1124-.
    16. Psaty BM, Smith NL, Siscovick DS, Koepsell TD, Weiss NS, Heckbert SR, / et al. Health outcomes associated with antihypertensive therapies used as first-line agents. A systematic review and meta-analysis. JAMA J Am Med Assoc. 1997;277(9):739-5. CrossRef
    17. Campbell DB, Phillips EM. Short term effects and urinary excretion of the new diuretic, indapamide, in normal subjects. Eur J Clin Pharmacol. 1974;7(6):407-4. CrossRef
    18. Sun H, Moore C, Dansette PM, Kumar S, Halpert JR, Yost GS. Dehydrogenation of the indoline-containing drug 4-chloro- / N-(2-methyl-1-indolinyl)-3-sulfamoylbenzamide (indapamide) by CYP3A4: correlation with in silico predictions. Drug Metab Dispos. 2009;37(3):672-4. CrossRef
    19. Van Hee W, Thomas J, Brems H. Indapamide in the treatment of essential arterial hypertension in the elderly. Postgrad Med J. 1981;57 Suppl 2:29-3.
    20. Jurinke C, van den Boom D, Cantor C, K?ster H. The use of MassARRAY technology for high throughput genotyping chip technology. In: Hoheisel J, Brazma A, Büssow K, Cantor C, Christians F, Chui G, / et al. editors. Advances in biochemical engineering/biotechnology. Advances in biochemical engineering/biotechnology, 77. Heidelberg: Springer; 2002. p. 57-4.
    21. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21(2):263-. CrossRef
    22. Schiavi P, Jochemsen R, Guez D. Pharmacokinetics of sustained and immediate release formulations of indapamide after single and repeated oral administration in healthy volunteers. Fundam Clin Pharmacol. 2000;14(2):139-6. CrossRef
    23. Nakashima K, Narukawa M, Kanazu Y, Takeuchi M. Differences between Japan and the United States in dosages of drugs recently approved in Japan. J Clin Pharmacol. 2011;51(4):549-0. CrossRef
    24. Arnold FL, Kusama M, Ono S. Exploring differences in drug doses between Japan and Western countries. Clin Pharmacol Ther. 2010;87(6):714-0. CrossRef
    25. Kim DH, Sriharsha L, Xu W, Kamel-Reid S, Liu X, Siminovitch K, / et al. Clinical relevance of a pharmacogenetic approach using multiple candidate genes to predict response and resistance to imatinib therapy in chronic myeloid leukemia. Clin Cancer Res. 2009;15(14):4750-. CrossRef
    26. Chowbay B, Zhou S, Lee EJ. An interethnic comparison of polymorphisms of the genes encoding drug-metabolizing enzymes and drug transporters: experience in Singapore. Drug Metab Rev. 2005;37(2):327-8. CrossRef
    27. Zhou Q, Yu XM, Lin HB, Wang L, Yun QZ, Hu SN, / et al. Genetic polymorphism, linkage disequilibrium, haplotype structure and novel allele analysis of CYP2C19 and CYP2D6 in Han Chinese. Pharmacogenomics J. 2009;9(6):380-4. CrossRef
    28. Kim K, Johnson JA, Derendorf H. Differences in drug pharmacokinetics between East Asians and Caucasians and the role of genetic polymorphisms. J Clin Pharmacol. 2004;44(10):1083-05. CrossRef
    29. Lin M, Chu C, Chang S, Lee H, Loo J, Akaza T, / et al. The origin of Minnan and Hakka, the so-called “Taiwanese- inferred by HLA study. Tissue Antigens. 2001;57:192-. CrossRef
    30. Evans WE, McLeod HL. Pharmacogenomics—drug disposition, drug targets, and side effects. N Engl J Med. 2003;348(6):538-9. CrossRef
    31. Ingelman-Sundberg M, Oscarson M, McLellan RA. Polymorphic human cytochrome P450 enzymes: an opportunity for individualized drug treatment. Trends Pharmacol Sci. 1999;20(8):342-. CrossRef
    32. Caruso FS, Szabadi RR, Vukovich RA. Pharmacokinetics and clinical pharmacology of indapamide. Am Heart J. 1983;106(1 Pt 2):212-0. CrossRef
    33. Robinson DM, Wellington K. Indapamide sustained release: a review of its use in the treatment of hypertension. Drugs. 2006;66(2):257-1. CrossRef
    34. Pedersen RS, Brasch-Andersen C, Sim SC, Bergmann TK, Halling J, Petersen MS, / et al. Linkage disequilibrium between the CYP2C19*17 allele and wildtype CYP2C8 and CYP2C9 alleles: identification of CYP2C haplotypes in healthy Nordic populations. Eur J Clin Pharmacol. 2010;66(12):1199-05. CrossRef
    35. Bohanec Grabar P, Grabnar I, Rozman B, Logar D, Tomsic M, Suput D, / et al. Investigation of the influence of CYP1A2 and CYP2C19 genetic polymorphism on 2-cyano-3-hydroxy- / N-[4-(trifluoromethyl)phenyl]-2-butenamide (A77 1726) pharmacokinetics in leflunomide-treated patients with rheumatoid arthritis. Drug Metab Dispos. 2009;37(10):2061-. CrossRef
  • 作者单位:Teng-Hsu Wang (1)
    Cheng-Huei Hsiong (1)
    Hsin-Tien Ho (6)
    Tung-Yuan Shih (1)
    San-Jan Yen (1)
    Hui-Hung Wang (2)
    Jer-Yuarn Wu (2) (3)
    Benjamin Pei-Chung Kuo (4)
    Yuan-Tsong Chen (2) (5)
    Shung-Tai Ho (7)
    Oliver Yoa-Pu Hu (1)

    1. School of Pharmacy, National Defense Medical Center, P.O. Box 90048-512, Taipei, Taiwan, Republic of China
    6. Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
    2. Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
    3. Department of Medical Research, China Medical College Hospital, Taichung, Taiwan, Republic of China
    4. Mithra Bioindustry Co., LTD, Taipei, Taiwan, Republic of China
    5. Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, 27710, USA
    7. Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
  • ISSN:1550-7416
文摘
To understand the genetic makeup and impact on pharmacokinetics (PK) in the Taiwanese population, we analyzed the pharmacogenetic (PG) profile and demonstrated its effects on enzyme metabolism using indapamide as an example. A multiplex mass spectrometry method was used to examine the single nucleotide polymorphism (SNP) profile of eight major phases I and II metabolic enzymes in 1,038 Taiwanese subjects. A PG/PK study was conducted in 24 healthy subjects to investigate the possible effects of 28 SNPs on drug biotransformation. Among the genetic profile analyzed, eight SNPs from CYP2A6, CYP2C19, CYP2D6, CYP2E1, CYP3A5, and UGT2B7 showed higher variant frequencies than those previously reported in Caucasians or Africans. For instance, we observed 14.7% frequency of the SNP rs5031016 (I471T) from CYP2A6 in Taiwanese, whereas 0% variation was reported in Caucasians and Africans. The PG/PK study of indapamide demonstrated that the polymorphic SNPs CYP2C9 rs4918758 and CYP2C19 rs4244285 appeared to confer lowered enzyme activity, as indicated by increased C max (25%?~-4%), increased area under the plasma level-time curves (30?6%), increased area under the time infinity (43%?~-0%), and lower apparent clearance values than PK for wild-type indapamide. Our results reinforce the biochemical support of CYP2C19 in indapamide metabolism and identify a possible new participating enzyme CYP2C9. The PG/PK approach contributed toward understanding the genetic makeup of different ethnic groups and associations of enzymes in drug metabolism. It could be used to identify two genetic markers that enable to differentiate subjects with varied PK outcomes of indapamide.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700