用户名: 密码: 验证码:
MH84: A Novel γ-Secretase Modulator/PPARγ Agonist—Improves Mitochondrial Dysfunction in a Cellular Model of Alzheimer's Disease
详细信息    查看全文
  • 作者:Maximilian Pohland ; Stephanie Hagl ; Maren Pellowska…
  • 关键词:Alzheimer’s disease ; Mitochondrial dysfunction ; γ ; Secretase modulators ; PPARγ ; agonists ; PGC1α ; Multifunctional agents ; Drug candidate
  • 刊名:Neurochemical Research
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:41
  • 期:1-2
  • 页码:231-242
  • 全文大小:1,763 KB
  • 参考文献:1.Ehret MJ, Chamberlin KW (2015) Current practices in the treatment of Alzheimer disease: where is the evidence after the phase III trials? Clin Ther 37:1604–1616CrossRef PubMed
    2.Lukiw WJ (2012) Amyloid beta (Aβ) peptide modulators and other current treatment strategies for Alzheimer’s disease (AD). Expert Opin Emerg Drugs 17:43–60CrossRef
    3.Bolognesi ML, Matera R, Minarini A, Rosini M, Melchiorre C (2009) Alzheimer’s disease: new approaches to drug discovery. Curr Opin Chem Biol 13:303–308CrossRef PubMed
    4.Eckert GP, Renner K, Eckert SH, Eckmann J, Hagl S, Abdel-Kader RM, Kurz C, Leuner K, Muller WE (2012) Mitochondrial dysfunction—a pharmacological target in Alzheimer’s disease. Mol Neurobiol 46:136–150CrossRef PubMed
    5.Müller WE, Eckert A, Kurz C, Eckert GP, Leuner K (2010) Mitochondrial dysfunction: common final pathway in brain aging and Alzheimer’s disease—therapeutic aspects. Mol Neurobiol 41:159–171CrossRef PubMed
    6.Leuner K, Hauptmann S, Abdel-Kader R, Scherping I, Keil U, Strosznajder JB, Eckert A, Müller WE (2007) Mitochondrial dysfunction: The first domino in brain aging and Alzheimer’s disease? Antioxid Redox Signal 9:1659–1675CrossRef PubMed
    7.Swerdlow RH, Burns JM, Khan SM (2014) The Alzheimer’s disease mitochondrial cascade hypothesis: progress and perspectives. Biochim Biophys Acta 1842:1219–1231CrossRef PubMed PubMedCentral
    8.Leuner K, Schütt T, Kurz C, Eckert SH, Schiller C, Occhipinti A, Mai S, Jendrach M, Eckert GP, Kruse SE, Palmiter RD, Brandt U, Dröse S, Wittig I, Willem M, Haass C, Reichert AS, Müller WE (2012) Mitochondrion-derived reactive oxygen species lead to enhanced amyloid beta formation. Antioxid Redox Signal 16:1421–1433CrossRef PubMed PubMedCentral
    9.Katsouri L, Parr C, Bogdanovic N, Willem M, Sastre M (2014) PPARγ co-activator-1α (PGC-1α) reduces amyloid-β generation through a PPARγ-dependent mechanism. J Alzheimers Dis 25:151–162
    10.Sastre M, Dewachter I, Rossner S, Bogdanovic N, Rosen E, Borghgraef P, Evert BO, Dumitrescu-Ozimek L, Thal DR, Landreth G, Walter J, Klockgether T, van Leuven F, Heneka MT (2006) Nonsteroidal anti-inflammatory drugs repress β-secretase gene promoter activity by the activation of PPARγ. Proc Natl Acad Sci USA 103:443–448CrossRef PubMed PubMedCentral
    11.Rossner S, Sastre M, Bourne K, Lichtenthaler SF (2006) Transcriptional and translational regulation of BACE1 expression—implications for Alzheimer’s disease. Prog Neurobiol 79:95–111CrossRef PubMed
    12.Roses AD, Saunders AM (2006) Perspective on a pathogenesis and treatment of Alzheimer’s disease. Alzheimers Dement 2:59–70CrossRef PubMed
    13.Guzior N, Wieckowska A, Panek D, Malawska B (2015) Recent development of multifunctional agents as potential drug candidates for the treatment of Alzheimer’s disease. Curr Med Chem 22:373–404CrossRef PubMed PubMedCentral
    14.Hieke M, Ness J, Steri R, Dittrich M, Greiner C, Werz O, Baumann K, Schubert-Zsilavecz M, Weggen S, Zettl H (2010) Design, synthesis, and biological evaluation of a novel class of γ-secretase modulators with PPARγ activity. J Med Chem 53:4691–4700CrossRef PubMed
    15.Hieke M, Ness J, Steri R, Greiner C, Werz O, Schubert-Zsilavecz M, Weggen S, Zettl H (2011) SAR studies of acidic dual γ-secretase/PPARγ modulators. Bioorg Med Chem 19:5372–5382CrossRef PubMed
    16.Flesch D, Ness J, Lamers C, Dehm F, Popella S, Steri R, Ogorek I, Hieke M, Dannhardt G, Werz O, Weggen S, Schubert-Zsilavecz M (2015) SAR-studies of γ-secretase modulators with PPARγ-agonistic and 5-lipoxygenase-inhibitory activity for Alzheimer’s disease. Bioorg Med Chem Lett 25:841–846CrossRef PubMed
    17.Eckert SH, Eckmann J, Renner K, Eckert GP, Leuner K, Muller WE (2012) Dimebon ameliorates amyloid-β induced impairments of mitochondrial form and function. J Alzheimers Dis 31:21–32PubMed
    18.Peters OM, Shelkovnikova T, Tarasova T, Springe S, Kukharsky MS, Smith GA, Brooks S, Kozin SA, Kotelevtsev Y, Bachurin SO, Ninkina N, Buchman VL (2013) Chronic administration of Dimebon does not ameliorate amyloid-β pathology in 5xFAD transgenic mice. J Alzheimers Dis 36:589–596PubMed
    19.Peters I, Igbavboa U, Schütt T, Haidari S, Hartig U, Rosello X, Böttner S, Copanaki E, Deller T, Kögel D, Wood WG, Müller WE, Eckert GP (2009) The interaction of beta-amyloid protein with cellular membranes stimulates its own production. Biochim Biophys Acta 1788:964–972CrossRef PubMed PubMedCentral
    20.Yan Q, Zhang J, Liu H, Babu-Khan S, Vassar R, Biere AL, Citron M, Landreth G (2003) Anti-inflammatory drug therapy alters β-amyloid processing and deposition in an animal model of Alzheimer’s disease. J Neurosci 23:7504–7509PubMed
    21.Chen L, Lin Z, Zhu Y, Lin N, Zhang J, Pan X, Chen X (2012) Ginsenoside Rg1 attenuates β-amyloid generation via suppressing PPARγ-regulated BACE1 activity in N2a-APP695 cells. Eur J Pharmacol 675:15–21CrossRef PubMed
    22.Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63CrossRef PubMed
    23.Crouch SP, Kozlowski R, Slater KJ, Fletcher J (1993) The use of ATP bioluminescence as a measure of cell proliferation and cytotoxicity. J Immunol Methods 160:81–88CrossRef PubMed
    24.Stadlmann S, Renner K, Pollheimer J, Moser PL, Zeimet AG, Offner FA, Gnaiger E (2006) Preserved coupling of oxidative phosphorylation but decreased mitochondrial respiratory capacity in IL-1β-treated human peritoneal mesothelial cells. Cell Biochem Biophys 44:179–186CrossRef PubMed
    25.Kuznetsov AV, Strobl D, Ruttmann E, Konigsrainer A, Margreiter R, Gnaiger E (2002) Evaluation of mitochondrial respiratory function in small biopsies of liver. Anal Biochem 305:186–194CrossRef PubMed
    26.Mangialasche F, Polidori MC, Monastero R, Ercolani S, Camarda C, Cecchetti R, Mecocci P (2009) Biomarkers of oxidative and nitrosative damage in Alzheimer’s disease and mild cognitive impairment. Ageing Res Rev 8:285–305CrossRef PubMed
    27.Calabrese V, Sultana R, Scapagnini G, Guagliano E, Sapienza M, Bella R, Kanski J, Pennisi G, Mancuso C, Stella AMG, Butterfield DA (2006) Nitrosative stress, cellular stress response, and thiol homeostasis in patients with Alzheimer’s disease. Antioxid Redox Signal 8:1975–1986CrossRef PubMed
    28.Barone E, Di Domenico F, Cenini G, Sultana R, Coccia R, Preziosi P, Perluigi M, Mancuso C, Butterfield DA (2011) Oxidative and nitrosative modifications of biliverdin reductase-A in the brain of subjects with Alzheimer’s disease and amnestic mild cognitive impairment. J Alzheimer’s Dis 25:623–633
    29.Guix FX, Wahle T, Vennekens K, Snellinx A, Chávez-Gutiérrez L, Ill-Raga G, Ramos-Fernandez E, Guardia-Laguarta C, Lleó A, Arimon M, Berezovska O, Muñoz FJ, Dotti CG, de Strooper B (2012) Modification of γ-secretase by nitrosative stress links neuronal ageing to sporadic Alzheimer’s disease. EMBO Mol Med 4:660–673CrossRef PubMed PubMedCentral
    30.Hagl S, Grewal R, Ciobanu I, Helal A, Khayyal MT, Muller WE, Eckert GP (2015) Rice bran extract compensates mitochondrial dysfunction in a cellular model of early Alzheimer’s disease. J Alzheimer’s Dis 43:927–938
    31.Brand MD, Nicholls DG (2011) Assessing mitochondrial dysfunction in cells. Biochem J 435:297–312CrossRef PubMed PubMedCentral
    32.Larsen S, Nielsen J, Hansen CN, Nielsen LB, Wibrand F, Stride N, Schroder HD, Boushel R, Helge JW, Dela F, Hey-Mogensen M (2012) Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. J Physiol 590:3349–3360CrossRef PubMed PubMedCentral
    33.Austin S, St-Pierre J (2012) PGC1α and mitochondrial metabolism—emerging concepts and relevance in ageing and neurodegenerative disorders. J Cell Sci 125:4963–4971CrossRef PubMed
    34.Handschin C, Spiegelman BM (2006) Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr Rev 27:728–735CrossRef PubMed
    35.Devi L, Ohno M (2012) Mitochondrial dysfunction and accumulation of the β-secretase-cleaved C-terminal fragment of APP in Alzheimer’s disease transgenic mice. Neurobiol Dis 45:417–424CrossRef PubMed PubMedCentral
    36.Anandatheerthavarada HK, Biswas G, Robin M, Avadhani NG (2003) Mitochondrial targeting and a novel transmembrane arrest of Alzheimer’s amyloid precursor protein impairs mitochondrial function in neuronal cells. J Cell Biol 161:41–54CrossRef PubMed PubMedCentral
    37.Dragicevic N, Mamcarz M, Zhu Y, Buzzeo R, Tan J, Arendash GW, Bradshaw PC (2010) Mitochondrial amyloid-β levels are associated with the extent of mitochondrial dysfunction in different brain regions and the degree of cognitive impairment in Alzheimer’s transgenic mice. J Alzheimer’s Dis 20(Suppl 2):S535–S550
    38.Pavlov PF, Wiehager B, Sakai J, Frykman S, Behbahani H, Winblad B, Ankarcrona M (2011) Mitochondrial γ-secretase participates in the metabolism of mitochondria-associated amyloid precursor protein. FASEB J 25:78–88CrossRef PubMed
    39.Pellowska M, Stein C, Pohland M, Merk D, Klein J, Eckert GP, Schubert-Zsilavecz M, Wurglics M (2014) Pharmacokinetic properties of MH84, a γ-secretase modulator with PPARγ agonistic activity. J Pharm Biomed Anal 102C:417–424
    40.Liang H, Ward WF (2006) PGC-1α: a key regulator of energy metabolism. Adv Physiol Educ 30:145–151CrossRef PubMed
    41.Robinson A, Grösgen S, Mett J, Zimmer VC, Haupenthal VJ, Hundsdörfer B, Stahlmann CP, Slobodskoy Y, Müller UC, Hartmann T, Stein R, Grimm MOW (2014) Upregulation of PGC-1α expression by Alzheimer’s disease-associated pathway: presenilin 1/amyloid precursor protein (APP)/intracellular domain of APP. Aging Cell 13:263–272CrossRef PubMed PubMedCentral
    42.Hondares E, Mora O, Yubero P, de la Concepción MR, Iglesias R, Giralt M, Villarroya F (2006) Thiazolidinediones and rexinoids induce peroxisome proliferator-activated receptor-coactivator (PGC)-1α gene transcription: an autoregulatory loop controls PGC-1α expression in adipocytes via peroxisome proliferator-activated receptor-γ coactivation. Endocrinology 147:2829–2838CrossRef PubMed
    43.Gong B, Chen F, Pan Y, Arrieta-Cruz I, Yoshida Y, Haroutunian V, Pasinetti GM (2010) SCFFbx2-E3-ligase-mediated degradation of BACE1 attenuates Alzheimer’s disease amyloidosis and improves synaptic function. Aging Cell 9:1018–1031CrossRef PubMed PubMedCentral
    44.Dovey HF, John V, Anderson JP, Chen LZ, De Saint Andrieu P, Fang LY, Freedman SB, Folmer B, Goldbach E, Holsztynska EJ, Hu KL, Johnson-Wood KL, Kennedy SL, Kholodenko D, Knops JE, Latimer LH, Lee M, Liao Z, Lieberburg IM, Motter RN, Mutter LC, Nietz J, Quinn KP, Sacchi KL, Seubert PA, Shopp GM, Thorsett ED, Tung JS, Wu J, Yang S et al (2001) Functional gamma-secretase inhibitors reduce beta-amyloid peptide levels in brain. J Neurochem 76:173–181CrossRef PubMed
    45.Henley DB, May PC, Dean RA, Siemers ER (2009) Development of semagacestat (LY450139), a functional γ-secretase inhibitor, for the treatment of Alzheimer’s disease. Expert Opin Pharmacother 10:1657–1664CrossRef PubMed
    46.Gillman KW, Starrett JE, Parker MF, Xie K, Bronson JJ, Marcin LR, McElhone KE, Bergstrom CP, Mate RA, Williams R, Meredith JE, Burton CR, Barten DM, Toyn JH, Roberts SB, Lentz KA, Houston JG, Zaczek R, Albright CF, Decicco CP, Macor JE, Olson RE (2010) Discovery and evaluation of BMS-708163, a potent, selective and orally bioavailable γ-secretase inhibitor. ACS Med Chem Lett 1:120–124CrossRef PubMed PubMedCentral
    47.Coric V, van Dyck CH, Salloway S, Andreasen N, Brody M, Richter RW, Soininen H, Thein S, Shiovitz T, Pilcher G, Colby S, Rollin L, Dockens R, Pachai C, Portelius E, Andreasson U, Blennow K, Soares H, Albright C, Feldman HH, Berman RM (2012) Safety and tolerability of the γ-secretase inhibitor avagacestat in a phase 2 study of mild to moderate Alzheimer disease. Arch Neurol 69:1430–1440CrossRef PubMed
    48.Doody RS, Raman R, Farlow M, Iwatsubo T, Vellas B, Joffe S, Kieburtz K, He F, Sun X, Thomas RG, Aisen PS, Siemers E, Sethuraman G, Mohs R (2013) A phase 3 trial of semagacestat for treatment of Alzheimer’s disease. N Engl J Med 369:341–350CrossRef PubMed
    49.Weissmiller AM, Natera-Naranjo O, Reyna SM, Pearn ML, Zhao X, Nguyen P, Cheng S, Goldstein LSB, Tanzi RE, Wagner SL, Mobley WC, Wu C (2015) A γ-secretase inhibitor, but not a γ-secretase modulator, induced defects in BDNF axonal trafficking and signaling: evidence for a role for APP. PloS One 10:e0118379CrossRef PubMed PubMedCentral
    50.Mitani Y, Yarimizu J, Saita K, Uchino H, Akashiba H, Shitaka Y, Ni K, Matsuoka N (2012) Differential effects between γ-secretase inhibitors and modulators on cognitive function in amyloid precursor protein-transgenic and nontransgenic mice. J Neurosci 32:2037–2050CrossRef PubMed
    51.Weggen S, Eriksen JL, Das P, Sagi SA, Wang R, Pietrzik CU, Findlay KA, Smith TE, Murphy MP, Bulter T, Kang DE, Marquez-Sterling N, Golde TE, Koo EH (2001) A subset of NSAIDs lower amyloidogenic Aβ42 independently of cyclooxygenase activity. Nature 414:212–216CrossRef PubMed
    52.Leuchtenberger S, Beher D, Weggen S (2006) Selective modulation of Aβ42 production in Alzheimers disease: non-steroidal anti-inflammatory drugs and beyond. CPD 12:4337–4355CrossRef
    53.Chávez-Gutiérrez L, Bammens L, Benilova I, Vandersteen A, Benurwar M, Borgers M, Lismont S, Zhou L, van Cleynenbreugel S, Esselmann H, Wiltfang J, Serneels L, Karran E, Gijsen H, Schymkowitz J, Rousseau F, Broersen K, de Strooper B (2012) The mechanism of γ-secretase dysfunction in familial Alzheimer disease. EMBO J 31:2261–2274CrossRef PubMed PubMedCentral
    54.Sagi SA, Weggen S, Eriksen J, Golde TE, Koo EH (2003) The non-cyclooxygenase targets of non-steroidal anti-inflammatory drugs, lipoxygenases, peroxisome proliferator-activated receptor, inhibitor of κB kinase, and NFκB, do not reduce amyloid β42 production. J Biol Chem 278:31825–31830CrossRef PubMed
    55.d’Abramo C, Massone S, Zingg J, Pizzuti A, Marambaud P, Dalla Piccola B, Azzi A, Marinari UM, Pronzato MA, Ricciarelli R (2005) Role of peroxisome proliferator-activated receptor gamma in amyloid precursor protein processing and amyloid beta-mediated cell death. Biochem J 391:693–698CrossRef PubMed PubMedCentral
    56.Cheng H, Shang Y, Jiang L, Shi T, Wang L (2015) The peroxisome proliferators activated receptor-gamma agonists as therapeutics for the treatment of Alzheimer’s disease and mild-to-moderate Alzheimer’s disease: a meta-analysis. Int J Neurosci. doi:10.​3109/​00207454.​2015.​1015722
    57.Read S, Wu P, Biscow M (2014) Sustained 4-year cognitive and functional response in early Alzheimer’s disease with pioglitazone. J Am Geriatr Soc 62:584–586CrossRef PubMed
    58.Miglio G, Rosa AC, Rattazzi L, Collino M, Lombardi G, Fantozzi R (2009) PPARγ stimulation promotes mitochondrial biogenesis and prevents glucose deprivation-induced neuronal cell loss. Neurochem Int 55:496–504CrossRef PubMed
    59.Xu S, Liu G, Bao X, Wu J, Li S, Zheng B, Anwyl R, Wang Q (2014) Rosiglitazone prevents amyloid-β oligomer-induced impairment of synapse formation and plasticity via increasing dendrite and spine mitochondrial number. J Alzheimers Dis 39:239–251PubMed
    60.Jahrling JB, Hernandez CM, Denner L, Dineley KT (2014) PPARγ recruitment to active ERK during memory consolidation is required for Alzheimer’s disease-related cognitive enhancement. J Neurosci 34:4054–4063CrossRef PubMed PubMedCentral
    61.Bachurin S, Bukatina E, Lermontova N, Tkachenko S, Afanasiev A, Grigoriev V, Grigorieva I, Ivanov Y, Sablin S, Zefirov N (2001) Antihistamine agent Dimebon as a novel neuroprotector and a cognition enhancer. Ann N Y Acad Sci 939:425–435CrossRef PubMed
    62.Shevtsova EF, Vinogradova DV, Kireeva EG, Reddy VP, Aliev G, Bachurin SO (2014) Dimebon attenuates the Aβ-induced mitochondrial permeabilization. Curr Alzheimer Res 11:422–429CrossRef PubMed
    63.Zhang S, Hedskog L, Petersen CAH, Winblad B, Ankarcrona M (2010) Dimebon (latrepirdine) enhances mitochondrial function and protects neuronal cells from death. J Alzheimer’s Dis 21:389–402
    64.Naga KK, Geddes JW (2011) Dimebon inhibits calcium-induced swelling of rat brain mitochondria but does not alter calcium retention or cytochrome C release. Neuromol Med 13:31–36CrossRef
    65.Cano-Cuenca N, del Pozo JESG, Jordán J (2014) Evidence for the efficacy of latrepirdine (Dimebon) treatment for improvement of cognitive function: a meta-analysis. J Alzheimer’s Dis 38:155–164
  • 作者单位:Maximilian Pohland (1)
    Stephanie Hagl (1)
    Maren Pellowska (2)
    Mario Wurglics (2)
    Manfred Schubert-Zsilavecz (2)
    Gunter P. Eckert (1)

    1. Institute of Pharmacology, Goethe University Frankfurt am Main, Max-von-Laue Str. 9, Frankfurt am Main, 60438, Germany
    2. Institute of Pharmaceutical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue Str. 9, Frankfurt am Main, 60438, Germany
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Neurosciences
    Biochemistry
    Neurology
  • 出版者:Springer Netherlands
  • ISSN:1573-6903
文摘
Developing new therapeutic strategies for Alzheimer’s disease (AD) is a current challenge. Approved drugs merely act symptomatically and delay the progression of the disease for a relatively short period of time. Here, we investigated the effectiveness of MH84 in a cellular HEK293APPwt model of AD, characterized by elevated beta amyloid protein levels (Aβ1–42) and mitochondrial dysfunction. MH84 is a derivate of pirinixic acid belonging to a novel class of γ-secretase modulators, which combines γ-secretase modulation with activation of peroxisome proliferator–activator receptor gamma (PPARγ). The mitochondria modifying Dimebon, the γ-secretase blocker DAPT, and the PPARγ agonist pioglitazone were used as controls. MH84 protects against nitrosative stress, increased mitochondrial respiration, citrate synthase (CS) activity and protein levels of PGC1α indicating enhanced mitochondrial content at nano-molar concentrations. Concurrently, MH84 decreased protein levels of APP, Aβ1–42, and C-terminal fragments at micro-molar concentrations. Both Dimebon and DAPT reduced cellular1–42 levels. Dimebon improved mitochondrial functions and DAPT decreased mitochondrial membrane potential. Pioglitazone had no effects on APP processing and mitochondrial function. Our data emphasizes MH84 as possible novel therapeutic agent with mitochondria-based mode of action.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700