用户名: 密码: 验证码:
Nonlinear analysis and power improvement of broadband low-frequency piezomagnetoelastic energy harvesters
详细信息    查看全文
  • 作者:Abdessattar Abdelkefi ; Nilma Barsallo
  • 关键词:Energy harvesting ; Broadband ; Low ; frequency ; Magnetic dipole ; Distributed ; parameter model ; Nonlinear dynamics
  • 刊名:Nonlinear Dynamics
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:83
  • 期:1-2
  • 页码:41-56
  • 全文大小:1,070 KB
  • 参考文献:1.Sodano, H., Park, G., Inman, D.J.: A review of power harvesting from vibration using piezoelectric materials. Shock Vib. Dig. 36, 197鈥?05 (2004)CrossRef
    2.Beeby, S.P., Tudor, M.J., White, N.M.: Energy harvesting vibration sources for micro-systems applications. Meas. Sci. Technol. 17, 175鈥?95 (2006)CrossRef
    3.Anton, S.R., Sodano, H.A.: A review of power harvesting using piezoelectric materials (2003鈥?006). Smart Mater. Struct. 16, 1鈥?1 (2007)CrossRef
    4.Cook-Chennault, K.A., Thambi, N., Sastry, A.M.: Powering MEMS portable devices鈥攁 review of non-regenerative and regenerative power supply systems with emphasis on piezoelectric energy harvesting systems. Smart Mater. Struct. 17, 043001 (2008)CrossRef
    5.Tang, L., Yang, Y., Soh, C.: Toward broadband vibration-based energy harvesting. J. Intell. Mater. Syst. Struct. 21, 1867 (2009)CrossRef
    6.Abdelkefi, A.: Global nonlinear analysis of piezoelectric energy harvesting from ambient and aeroelastic vibrations. PhD Dissertation. Virginia Tech (2012)
    7.Roundy, S., Wright, P.K.: A piezoelectric vibration-based generator for wireless electronics. Smart Mater. Struct. 13, 1131 (2005)CrossRef
    8.Clair, D., Bibo, A., Sennakesavababu, V., Daqaq, M.F., Li, G.: A scalable concept for micropower generation using flow-induced self-excited oscillations. Appl. Phys. Lett. 96, 144103 (2010)CrossRef
    9.Karami, A., Inman, D.J.: Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters. Appl. Phys. Lett. 100, 042901 (2012)CrossRef
    10.Abdelkefi, A., Ghommem, M.: Piezoelectric energy harvesting from morphing wing motions for micro air vehicles. Theor. Appl. Mech. Lett. 3, 052001 (2013)CrossRef
    11.Roundy, S., Wright, P.K., Rabaey, J.: A study of low level vibrations as a power source for wireless sensor nodes. Comput. Commun. 26, 1131鈥?144 (2003)CrossRef
    12.Karami, A., Inman, D.J.: Equivalent damping and frequency change for linear and nonlinear hybrid vibrational energy harvesting systems. J. Sound Vib. 330, 5583鈥?597 (2012)CrossRef
    13.Wang, L., Yuan, F.G.: Vibration energy harvesting by magnetostrictive material. Smart Mater. Struct. 17, 045009 (2008)CrossRef
    14.Muralt, P.: Ferroelectric thin films for micro-sensors and actuators: a review. J. Micromech. Microeng. 10, 136鈥?46 (2000)CrossRef
    15.Inman, D.J., Grisso, B.L.: Towards autonomous sensing. In: Smart Structures and Materials Conference. SPIE, 61740T (2006)
    16.Abdelkefi, A., Najar, F., Nayfeh, A.H., Ben Ayed, S.: An energy harvester using piezoelectric cantilever beams undergoing coupled bending-torsion vibrations. Smart Mater. Struct. 20, 115007 (2011)CrossRef
    17.Masana, R., Daqaq, M.F.: Electromechanical modeling and nonlinear analysis of axially loaded energy harvesters. J. Vib. Acoust. 133, 011007 (2011)CrossRef
    18.Abdelkefi, A., Nuhait, A.: Modeling and performance analysis of cambered wing-based piezoaeroelastic energy harvesters. Smart Mater. Struct. 22, 095029 (2013)CrossRef
    19.Tang, L., Yang, Y.: A nonlinear piezoelectric energy harvester with magnetic oscillator. Appl. Phys. Lett. 101, 094102 (2012)CrossRef
    20.Dai, H.L., Abdelkefi, A., Wang, L.: Piezoelectric energy harvesting from concurrent vortex-induced vibrations and base excitations. Nonlinear Dyn. 77, 967鈥?81 (2014)CrossRef MathSciNet
    21.Yan, Z., Abdelkefi, A.: Nonlinear characterization of concurrent energy harvesting from galloping and base excitations. Nonlinear Dyn. 77, 1171鈥?189 (2014)CrossRef
    22.Ben Ayed, S., Abdelkefi, A., Najar, F., Hajj, M.R.: Design and performance of variable-shaped piezoelectric energy harvesters. J. Intell. Mater. Syst. Struct. 25, 174鈥?86 (2014)CrossRef
    23.Rosa, M., De Marqui, C.: Modeling and analysis of a piezoelectric energy harvester with varying cross-sectional area. Shock Vib. (2014). doi:10.鈥?155/鈥?014/鈥?30503
    24.Sharpes, N., Abdelkefi, A., Priya, S.: Comparative analysis of one-dimensional and two-dimensional cantilever piezoelectric energy harvesters. Energy Harvest. Syst. 1, 209 (2014)
    25.Shahruz, S.M.: Design of mechanical bandpass filters for energy scavenging. J. Sound Vib. 292, 987鈥?98 (2006)CrossRef
    26.Challa, V.R., Prasad, M.G., Shi, Y., Fisher, T.: A vibration energy harvesting device with bidirectional resonance frequency tunability. Smart Mater. Struct. 17, 015035 (2008)CrossRef
    27.Elvin, N.G., Elvin, A.A.: Effects of axial forces on cantilever piezoelectric resonators for structural energy harvesting. Strain 47, 153鈥?57 (2011)CrossRef
    28.Lui, H., Lee, C., Kobayashi, T., Tay, C.J., Quan, C.: Investigation of a MEMS piezoelectric energy harvester system with a frequency-widened-bandwidth mechanism introduced by mechanical stoppers. Smart Mater. Struct. 21, 035005 (2012)CrossRef
    29.Quinn, D., Triplett, L., Vakakis, D., Bergman, L.: Comparing linear and essentially nonlinear vibration-based energy harvesting. J. Vib. Acoust. 133, 011001 (2011)CrossRef
    30.Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Effects of nonlinear piezoelectric coupling on energy harvesters under direct excitation. Nonlinear Dyn. 67, 1221鈥?232 (2012)MATH CrossRef MathSciNet
    31.Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Global nonlinear distributed-parameter model of parametrically excited piezoelectric energy harvesters. Nonlinear Dyn. 67, 1147鈥?160 (2012)MATH CrossRef MathSciNet
    32.Mann, B.P., Sims, N.D.: Energy harvesting from the nonlinear oscillations of magnetic levitation. J. Sound Vib. 319, 515鈥?30 (2009)CrossRef
    33.Stanton, S.C., McGehee, C.C., Mann, B.P.: Reversible hysteresis for broadband magnetopiezoelastic energy harvesting. Appl. Phys. Lett. 95, 174103 (2009)
    34.Barton, D., Burrow, S., Clare, L.: Energy harvesting from vibrations with a nonlinear oscillator. J. Vib. Acoust. 132, 0210091 (2010)CrossRef
    35.Cottone, F., Vocca, H., Gammaitoni, L.: Nonlinear energy harvesting. Phys. Rev. Lett. 102, 080601 (2009)CrossRef
    36.Stanton, S.C., McGehee, C.C., Mann, B.P.: Nonlinear dynamics for broadband energy harvesting: investigation of a bistable piezoelectric inertial generator. Phys. D 239, 640鈥?53 (2010)MATH CrossRef
    37.Litak, G., Friswell, M.I., Adhikari, S.: Magnetopiezoelastic energy harvesting driven by random excitations. Appl. Phys. Lett. 96, 214103 (2010)CrossRef
    38.Harne, R.L., Wang, K.W.: A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater. Struct. 22, 023001 (2013)CrossRef
    39.Pellegrini, S.P., Tolou, N., Schenk, M., Herder, J.L.: Bistable vibration energy harvesters: a review. J. Intell. Mater. Syst. Struct. 24, 1303鈥?312 (2013)CrossRef
    40.Massana, R., Daqaq, M.F.: Relative performance of a vibratory energy harvester in mono- and bi-stable potentials. J. Sound Vib. 330, 6036鈥?052 (2011)CrossRef
    41.Abdelkefi, A., Barsallo, N.: Comparative modeling of low-frequency piezomagnetoelastic energy harvesters. J. Intell. Mater. Syst. Struct. 25, 1771鈥?785 (2014)CrossRef
    42.Lin, J., Lee, B., Alphenaar, B.: The magnetic coupling of a piezoelectric cantilever for enhanced energy harvesting efficiency. Smart Mater. Struct. 19, 045012 (2010)CrossRef
    43.Furlani, E.P.: Permanent Magnet and Electromechanical Devices: Materials, Analysis, and Applications. Elsevier, New York (2001)
    44.Agashe, J.S., Arnold, D.P.: A study of scaling and geometry effects on the forces between cuboidal and cylindrical magnets using analytical force solutions. J. Phys. D Appl. Phys. 41, 105001 (2008)CrossRef
    45.Upadrashta, D., Yang, Y., Tang, L.: Material strength consideration in the design optimization of nonlinear energy harvester. J. Intell. Mater. Syst. Struct. (2014). doi:10.鈥?177/鈥?045389X14546651鈥?/span>
    46.Younis, M., Nayfeh, A.H.: A study of the nonlinear response of a resonant microbeam to an electric actuation. Nonlinear Dyn. 31, 91鈥?17 (2003)MATH CrossRef
    47.Younis, M., Abdel-Rahman, E.M., Nayfeh, A.H.: A reduced-order model for electrically actuated microbeam-based MEMS. J. Micromech. Syst. 12, 672鈥?80 (2003)CrossRef
    48.Nayfeh, A.H., Younis, M.: Dynamic pull-in phenomenon in MEMS resonators. Nonlinear Dyn. 48, 153鈥?63 (2007)MATH CrossRef
    49.Abdelkefi, A., Barsallo, N., Tang, L.H., Yang, Y., Hajj, M.R.: Modeling, validation, and performance of low-frequency piezoelectric energy harvesters. J. Intell. Mater. Syst. Struct. 25, 1429鈥?444 (2014)CrossRef
  • 作者单位:Abdessattar Abdelkefi (1)
    Nilma Barsallo (2)

    1. New Mexico State University, Las Cruces, NM, USA
    2. Department of Engineering Science and Mechanics, Virginia Tech, Blacksburg, VA, USA
  • 刊物类别:Engineering
  • 刊物主题:Vibration, Dynamical Systems and Control
    Mechanics
    Mechanical Engineering
    Automotive and Aerospace Engineering and Traffic
  • 出版者:Springer Netherlands
  • ISSN:1573-269X
文摘
A significant impediment to the deployment of vibration-based energy harvesting devices has been the limitation of most low-frequency transducers, usually in the form of unimorph or bimorph cantilever beam, to extract energy from a very narrow bandwidth around the transducer鈥檚 fundamental frequency. In such devices, a slight deviation from the fundamental frequency causes a significant reduction in the level of harvested power by several orders of magnitudes. Additionally, most of the current research efforts on the design of piezoelectric energy harvesters have had limited success in achieving low resonance frequency. To overcome these challenges, we introduce an enhanced broadband low-frequency piezomagnetoelastic energy harvester. This harvester consists of a partially covered piezoelectric cantilever beam with a fixed magnet mass at the top of the magnet tip mass. A nonlinear distributed-parameter model based on Euler鈥揃ernoulli beam theory and Galerkin discretization is developed. This electromechanical model is validated with previous experimental measurements for a specific value of the spacing distance between the two magnets. A parametric study is performed to determine the effects of the spacing distance between the two magnets on the static position of the harvester, natural frequency, and level of the harvested power. It is demonstrated that a decrease between the two attractive magnets results in a decrease in the natural frequency of the harvester with a strong softening behavior which gives the opportunity to harvest energy at broadband low-frequency range. The results also show that the presence and importance of the softening behavior depends on the electrical load resistance. In conclusion, the results show that depending on the available low excitation frequency, an enhanced piezoelectric energy harvester can be tuned and optimized by changing the spacing distance between the two tip magnets. Keywords Energy harvesting Broadband Low-frequency Magnetic dipole Distributed-parameter model Nonlinear dynamics

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700