用户名: 密码: 验证码:
A Matrix Differential Harnack Estimate for a Class of Ultraparabolic Equations
详细信息    查看全文
  • 作者:Hong Huang
  • 关键词:Ultraparabolic equation ; Matrix differential Harnack estimate ; Maximum principle ; 35K70
  • 刊名:Potential Analysis
  • 出版年:2014
  • 出版时间:October 2014
  • 年:2014
  • 卷:41
  • 期:3
  • 页码:771-782
  • 全文大小:328 KB
  • 参考文献:1. Cao, H.D.: On Harnack’s inequalities for the K?hler-Ricci flow. Invent. Math. 109(2), 247-63 (1992) CrossRef
    2. Cao, H.D., Ni, L.: Matrix Li-Yau-Hamilton estimates for the heat equation on K?hler manifolds. Math. Ann. 331(4), 795-07 (2005) CrossRef
    3. Carciola, A., Pascucci, A., Polidoro, S.: Harnack inequality and no-arbitrage bounds for self-financing portfolios. Bol. Soc. Esp. Mat. Apl. 49, 19-1 (2009)
    4. Cinti, C., Nystrom, K., Polidoro, S.: A note on Harnack inequalities and propagation sets for a class of hypoelliptic operators. Potential Anal. 33(4), 341-54 (2010) CrossRef
    5. Hamilton, R.: The Harnack estimate for the Ricci flow. J. Diff. Geom. 37(1), 225-43 (1993)
    6. Hamilton, R.: A matrix Harnack estimate for the heat equation. Comm. Anal. Geom. 1(1), 113-26 (1993)
    7. Hamilton, R.: Monotonicity formulas for parabolic flows on manifolds. Comm. Anal. Geom. 1(1), 127-37 (1993)
    8. Hamilton, R.: Li-Yau estimates and their Harnack inequalities. Geom. Anal. I(ALM 17), 329-62 (2011)
    9. H?rmander, L.: Hypoelliptic second order differential equations. Acta. Math. 119, 147-71 (1967) CrossRef
    10. Lanconelli, E., Pascucci, A., Polidoro, S.: Linear and nonlinear ultraparabolic equations of Kolmogorov type arising in diffusion theory and in finance. In: Nonlinear Problems in Mathematical Physics and Related Topics, II, pp. 243-65. Kluwer/Plenum, New York (2002)
    11. Lanconelli, E., Polidoro, S.: On a class of hypoelliptic evolution operators, Partial differential equations, II (Turin, 1993). Rend Sem. Mat. Univ. Politec. Torino 52, 29-3
    12. Li, P., Yau, S.-T.: On the parabolic kernel of the Schr?dinger operator. Acta. Math. 156, 153-01 (1986) CrossRef
    13. Ni, L.: Monotonicity and Li-Yau-Hamilton inequalities. In: Geometric Flows, 251-01, Surveys in differential geometry, vol. XII. International Press (2008)
    14. Pascucci, A., Polidoro, S.: On the Harnack inequality for a class of hypoelliptic evolution equations. Trans. Amer. Math. Soc. 356, 4383-394 (2004) CrossRef
  • 作者单位:Hong Huang (1)

    1. School of Mathematical Sciences, Key Laboratory of Mathematics and Complex Systems, Beijing Normal University, Beijing, 100875, People’s Republic of China
  • ISSN:1572-929X
文摘
Let u be a positive solution of the ultraparabolic equation $$\partial _{t} u=\sum\limits_{i=1}^{n} \partial _{x_{i}}^{2} u+\sum\limits_{i=1}^{k} x_{i}\partial _{x_{n+i}}u \hspace {8mm} \text {on} \hspace {4mm} \mathbb {R}^{n+k}\times (0,T),$$ where 1 ?k ?n and 0 T ?+ ?/em>. Assume that u and its derivatives (w.r.t. the space variables) up to the second order are bounded on any compact subinterval of (0, T). Then the difference H(log u) ?H (log f) of the Hessian matrices of log u and of log f (both w.r.t. the space variables) is non-negatively definite, where f is the fundamental solution of the above equation with pole at the origin (0, 0). The estimate in the case n = k = 1 is due to Hamilton. As a corollary we get that \(\Delta l+\frac {n+3k}{2t}+\frac {6k}{t^{3}}\geq 0\) , where l = log u, and \(\Delta =\sum _{i=1}^{n+k} \partial _{x_{i}}^{2} \) .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700