用户名: 密码: 验证码:
Glueball production via gluonic penguin \(B\) decays
详细信息    查看全文
  • 作者:Xiao-Gang He (1) (2) (3)
    Tzu-Chiang Yuan (4)

    1. Department of Physics
    ; INPAC ; SKLPPC ; Shanghai Jiao Tong University ; Shanghai ; 200240 ; China
    2. National Center for Theoretical Sciences and Physics Department of National Tsing Hua University
    ; Hsinchu ; Taiwan
    3. Department of Physics
    ; National Taiwan University ; Taipei ; 10764 ; Taiwan
    4. Institute of Physics
    ; Academia Sinica ; Nangang ; Taipei ; 11529 ; Taiwan
  • 刊名:The European Physical Journal C - Particles and Fields
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:75
  • 期:3
  • 全文大小:294 KB
  • 参考文献:1. Chen, Y, Alexandru, A, Dong, SJ, Draper, T, Horvath, I, Lee, FX, Liu, KF, Mathur, N, Morningstar, C, Peardon, M, Tamhankar, S, Yang, BL, Zhang, JB (2006) Phys. Rev. D 73: pp. 014516 CrossRef
    2. Gregory, E, Irving, A, Lucini, B, McNeile, C, Rago, A, Richards, C, Rinaldi, E (2012) JHEP 1210: pp. 170 CrossRef
    3. Lee, W, Weingarten, D (1999) Phys. Rev. D 61: pp. 014015 CrossRef
    4. Burakovsky, L, Page, PR (1998) Phys. Rev. D 59: pp. 014022 CrossRef
    5. Giacosa, F, Gutsche, Th, Lyubovitskij, VE, Faessler, A (2005) Phys. Rev. D 72: pp. 094006 CrossRef
    6. Close, FE, Zhao, Q (2005) Phys. Rev. D 71: pp. 094022 CrossRef
    7. X.G. He, X.Q. Li, X. Liu, X.Q. Zeng, Phys. Rev. D 73, 051502 (2006). [ibid. D 73, 114026 (2006)]
    8. A.H. Fariborz, Phys. Rev. D 74, 054030 (2006). arXiv:hep-ph/0607105
    9. H.-Y. Cheng, C.-K. Chua, K.-F. Liu, Phys. Rev. D 74, 094005 (2006). arXiv:hep-ph/0607206
    10. S. Narison, Nucl. Phys. B 509, 312 (1998). arXiv:hep-ph/9612457
    11. H. Forkel, Phys. Rev. D 71, 054008 (2005). arXiv:hep-ph/0312049
    12. X.-G. He, W.-S. Hou, C.S. Huang, Phys. Lett. B 429, 99 (1998). arXiv:hep-ph/9712478
    13. G. Gabadadze, Phys. Rev. D 58, 055003 (1998). arXiv:hep-ph/9711380
    14. H.-Y. Cheng, H.-N. Li, K.-F. Liu, Phys. Rev. D 79, 014024 (2009). arXiv:0811.2577 [hep-ph]
    15. H.-Y. Cheng, AIP Conf. Proc. 1257, 477 (2010). arXiv:0912.3561 [hep-ph]
    16. Cheng, H-Y (2009) Int. J. Mod. Phys. A 24: pp. 3392 CrossRef
    17. B. Lucini, PoS QCD -TNT-III, 023 (2014). arXiv:1401.1494 [hep-lat]
    18. Novikov, VA, Shifman, MA, Vainshtein, AI, Zakharov, VI (1980) Nucl. Phys. B 165: pp. 67 CrossRef
    19. He, X-G, Jin, H-Y, Ma, J-P (2002) Phys. Rev. D 66: pp. 074015 CrossRef
    20. Brodsky, S, Goldhaber, AS, Lee, J (2003) Phys. Rev. Lett. 91: pp. 112001 CrossRef
    21. Atwood, D, Soni, A (1997) Phys. Lett. B 405: pp. 150 CrossRef
    22. Hou, WS, Tseng, B (1998) Phys. Rev. Lett. 80: pp. 434 CrossRef
    23. X.G. He, G.L. Lin, Phys. Lett. B 454, 123 (1999). [We note that \(-P_s(q^2,\mu )\) in Eq. (4) of this paper should be replaced by \(+P_s(q^2,\mu )\) ]
    24. Carlson, CE, Coyne, JJ, Fishbane, PM, Gross, F, Meshkov, S (1981) Phys. Lett. B 99: pp. 353 CrossRef
    25. Cornwall, JM, Soni, A (1985) Phys. Rev. D 32: pp. 764 CrossRef
    26. J.M. Cornwall, A. Soni, ibid. D 29, 1424 (1984)
    27. M.S. Chanowitz, Phys. Rev. Lett. 95, 172001 (2005). arXiv:hep-ph/0506125
    28. C.-H. Chen, T.-C. Yuan, Phys. Lett. B 650, 379 (2007). arXiv:hep-ph/0702067
    29. K.-T. Chao, X.-G. He, J.-P. Ma, Phys. Rev. Lett. 98, 149103 (2007). arXiv:0704.1061 [hep-ph]
    30. K.T. Chao, X.-G. He, J.P. Ma, Eur. Phys. J. C 55, 417 (2008). arXiv:hep-ph/0512327
    31. J.F. Donoghue, E. Golowich, B.R. Holstein, / Dynamics of the Standard Model (Cambridge University Press, Cambridge, 1992)
    32. J. Beringer et al., Particle data group. Phys. Rev. D 86, 010001 (2012)
    33. Albaladejo, M, Oller, JA (2008) Phys. Rev. Lett. 101: pp. 252002 CrossRef
    34. W.I. Eshraim, S. Janowski, F. Giacosa, D.H. Rischke, Phys. Rev. D 87(5), 054036 (2013). arXiv:1208.6474 [hep-ph]
    35. M. Ablikim et al., BES Collaboration. Phys. Rev. Lett. 95, 262001 (2005)
    36. X.-G. He, X.-Q. Li, X. Liu, J.P. Ma, Eur. Phys. J. C 49, 731 (2007). arXiv:hep-ph/0509140
    37. M. Ablikim et al., BESIII Collaboration, Phys. Rev. Lett. 106, 072002 (2011). arXiv:1012.3510 [hep-ex]
    38. T. Aushev, W. Bartel, A. Bondar, J. Brodzicka, T.E. Browder, P. Chang, Y. Chao, K.F. Chen et al. arXiv:1002.5012 [hep-ex]
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Elementary Particles and Quantum Field Theory
    Nuclear Physics, Heavy Ions and Hadrons
    Physics beyond the Standard Model
    Measurement Science and Instrumentation
    Astronomy, Astrophysics and Cosmology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1434-6052
文摘
We study glueball \(G\) production in gluonic penguin decay \(B\rightarrow G + X_s\) , using the next-to-leading order \(b\rightarrow s g^*\) gluonic penguin interaction and effective couplings of a glueball to two perturbative gluons. Subsequent decays of a scalar glueball are described by using techniques of effective chiral Lagrangians to incorporate the interaction between a glueball and pseudoscalar mesons. Mixing effects between the pure glueball with other mesons are considered. Identifying the \(f_0(1710)\) as a scalar glueball, we find that both the top and the charm penguin are important and obtain a sizable branching ratio for \(B\rightarrow f_0(1710) + X_s\) of order \(1.3\times 10^{-4}(f/0.07\,\text{ GeV }^{-1})^2\) , where the effective coupling strength \(f\) is estimated to be \(0.07\) GeV \(^{-1}\) using experimental data for the branching ratio of \(f_0(1710) \rightarrow K \overline{K}\) based on a chiral Lagrangian estimate. An alternative perturbative QCD based estimation of \(f\) is a factor of 20 larger, which would imply a much enhanced branching ratio. Glueball production from this rare semi-inclusive \(B\) decay can be probed at the LHCb and Belle II to narrow down the allowed parameter space. A similar branching ratio is expected for the pseudoscalar glueball. We also briefly comment on the case of vector and tensor glueballs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700