用户名: 密码: 验证码:
Comparative assessment of the bacterial communities associated with Aedes aegypti larvae and water from domestic water storage containers
详细信息    查看全文
  • 作者:Nsa Dada (1)
    Estelle Jumas-Bilak (2) (3)
    Sylvie Manguin (4)
    Razak Seidu (1)
    Thor-Axel Stenstr枚m (1) (5)
    Hans J Overgaard (1) (6) (7)

    1. Department of Mathematical Sciences and Technology
    ; Norwegian University of Life Sciences ; 脜s ; Norway
    2. Laboratoire d鈥橦ygi猫ne hospitali猫re
    ; Centre Hospitalier R茅gional Universitaire de Montpellier ; Montpellier ; France
    3. UMR5119
    ; Universit茅 Montpellier 1 ; Montpellier ; France
    4. IRD2 Institut de Recherche pour le D茅veloppement (IRD)
    ; UMR-MD3 ; Universit茅 Montpellier 1 ; Montpellier ; France
    5. SARChl Chair
    ; Institute for Water and Waste Water Technology ; Durban University of Technology ; Durban ; South Africa
    6. Institut de Recherche pour le D茅veloppement (IRD)
    ; Maladies Infectieuses et Vecteurs ; Ecologie ; G茅n茅tique ; Evolution et Contr么le (IRD 224-CNRS 5290 UM1-UM2) ; Montpellier Cedex 5 ; France
    7. Department of Entomology
    ; Faculty of Agriculture ; Kasetsart University ; Bangkok ; 10900 ; Thailand
  • 关键词:Aedes aegypti ; Bacterial diversity ; Enteric bacteria ; E. coli ; Domestic water storage containers ; 16S rRNA ; TTGE ; Thailand
  • 刊名:Parasites & Vectors
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:7
  • 期:1
  • 全文大小:2,692 KB
  • 参考文献:1. Simmons, CP, Farrar, JJ, Nguyen, V, Wills, B (2012) Dengue. N Engl J Med 366: pp. 1423-1432 CrossRef
    2. Chareonviriyaphap, T, Akratanakul, P, Nettanomsak, S, Huntamai, S (2003) Larval habitats and distribution patterns of Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse), in Thailand. Southeast Asian J Trop Med Public Health 34: pp. 529-535
    3. Aziz, AT, Dieng, H, Ahmad, AH, Mahyoub, JA, Turkistani, AM, Mesed, H, Koshike, S, Satho, T, Salmah, MRC, Ahmad, H, Zuharah, WF, Ramli, AS, Miake, F (2012) Household survey of container鈥揵reeding mosquitoes and climatic factors influencing the prevalence of Aedes aegypti (Diptera: Culicidae) in Makkah City, Saudi Arabia. Asian Pac J Trop Biomed 2: pp. 849-857 CrossRef
    4. Hiscox, A, Kaye, A, Vongphayloth, K, Banks, I, Piffer, M, Khammanithong, P, Sananikhom, P, Kaul, S, Hill, N, Lindsay, SW, Brey, PT (2013) Risk factors for the presence of Aedes aegypti and Aedes albopictus in domestic water-holding containers in areas impacted by the Nam Theun 2 hydroelectric project. Laos Am J Trop Med Hyg 88: pp. 1070-1078 CrossRef
    5. Ponnusamy, L, Xu, N, Stav, G, Wesson, D, Schal, C, Apperson, C (2008) Diversity of bacterial communities in container habitats of mosquitoes. Microb Ecol 56: pp. 593-603 CrossRef
    6. Yee, DA, Allgood, D, Kneitel, JM, Kuehn, KA (2012) Constitutive differences between natural and artificial container mosquito habitats: vector communities, resources, microorganisms, and habitat parameters. J Med Entomol 49: pp. 482-491 CrossRef
    7. Walker, ED, Lawson, DL, Merritt, RW, Morgan, WT, Klug, MJ (1991) Nutrient dynamics, bacterial populations, and mosquito productivity in tree hole ecosystems and microcosms. Ecology 72: pp. 1529-1546 CrossRef
    8. Walker, ED, O鈥橫eara, GF, Morgan, WT (1996) Bacterial abundance in larval habitats of Aedes albopictus (Diptera: Culicidae) in a Florida cemetery. J Vector Ecol 21: pp. 173-177
    9. Apte-Deshpande, A, Paingankar, M, Gokhale, MD, Deobagkar, DN (2012) Serratia odorifera a midgut inhabitant of Aedes aegypti mosquito enhances its susceptibility to dengue-2 virus. PLoS One 7: pp. e40401 CrossRef
    10. Minard, G, Mavingui, P, Moro, C (2013) Diversity and function of bacterial microbiota in the mosquito holobiont. Parasit Vectors 6: pp. 146 CrossRef
    11. Dillon, RJ, Dillon, VM (2004) The gut bacteria of insects: nonpathogenic interactions. Annu Rev Entomol 49: pp. 71-92 CrossRef
    12. Ricci, I, Damiani, C, Capone, A, DeFreece, C, Rossi, P, Favia, G (2012) Mosquito/microbiota interactions: from complex relationships to biotechnological perspectives. Curr Opin Microbiol 15: pp. 278-284 CrossRef
    13. Dong, Y, Manfredini, F, Dimopoulos, G (2009) Implication of the mosquito midgut microbiota in the defense against malaria parasites. PLoS Pathog 5: pp. e1000423 CrossRef
    14. Ricci, I, Valzano, M, Ulissi, U, Epis, S, Cappelli, A, Favia, G (2012) Symbiotic control of mosquito borne disease. Pathog Glob Health 106: pp. 380-385 CrossRef
    15. Pidiyar, VJ, Jangid, K, Patole, MS, Shouche, YS (2004) Studies on cultured and uncultured microbiota of wild Culex quinquefasciatus mosquito midgut based on 16s ribosomal RNA gene analysis. Am J Trop Med Hyg 70: pp. 597-603
    16. Dharne, M, Patole, M, Shouche, YS (2006) Microbiology of the insect gut:tales from mosquitoes and bees. J Biosci 31: pp. 293-295 CrossRef
    17. Lindh, JM, Borg-Karlson, AK, Faye, I (2008) Transstadial and horizontal transfer of bacteria within a colony of Anopheles gambiae (Diptera: Culicidae) and oviposition response to bacteria-containing water. Acta Trop 107: pp. 242-250 CrossRef
    18. Romano-Bertrand, S, Parer, S, Lotth茅, A, Colson, P, Albat, B, Jumas-Bilak, E Temporal Temperature Gel Electrophoresis to Survey Pathogenic Bacterial Communities: The Case of Surgical Site Infections. In: Sameh, M eds. (2012) Gel Electrophoresis - Advanced Techniques. InTech open access Publisher, Rijeka, Croatia, pp. 291-312
    19. Dada, N, Vannavong, N, Seidu, R, Lenhart, A, Stenstrom, TA, Chareonviriyaphap, T, Overgaard, HJ (2013) Relationship between Aedes aegypti production and occurrence of Escherichia coli in domestic water storage containers in rural and sub-urban villages in Thailand and Laos. Acta Trop 126: pp. 177-185 CrossRef
    20. Rattanarithikul, R, Harbach, RE, Harrison, BA, Panthusiri, P, Coleman, RE, Richardson, JH (2010) Illustrated keys to the mosquitoes of Thailand. VI. Tribe Aedini. Southeast Asian J Trop Med Public Health 41: pp. 1-225
    21. Manguin, S, Ngo, CT, Tainchum, K, Juntarajumnong, W, Chareonviriyaphap, T, Michon, A-L, Jumas-Bilak, E Bacterial Biodiversity in Midguts of Anopheles Mosquitoes, Malaria Vectors in Southeast Asia. In: Manguin, S eds. (2013) Anopheles mosquitoes- New insights into malaria vectors. InTech open access Publisher, Rijeka, Croatia, pp. 549-576 CrossRef
    22. Caporaso, JG, Kuczynski, J, Stombaugh, J, Bittinger, K, Bushman, FD, Costello, EK, Fierer, N, Pena, AG, Goodrich, JK, Gordon, JI, Huttley, GA, Kelley, ST, Knights, D, Koenig, JE, Ley, RE, Lozupone, CA, McDonald, D, Muegge, BD, Pirrung, M, Reeder, J, Sevinsky, JR, Turnbaugh, PJ, Walters, WA, Widmann, J, Yatsunenko, T, Zaneveld, J, Knight, R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7: pp. 335-336 CrossRef
    23. Edgar, RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26: pp. 2460-2461 CrossRef
    24. Wang, Q, Garrity, GM, Tiedje, JM, Cole, JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73: pp. 5261-5267 CrossRef
    25. McDonald, D, Price, MN, Goodrich, J, Nawrocki, EP, DeSantis, TZ, Probst, A, Andersen, GL, Knight, R, Hugenholtz, P (2012) An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6: pp. 610-618 CrossRef
    26. DeSantis, TZ, Hugenholtz, P, Larsen, N, Rojas, M, Brodie, EL, Keller, K, Huber, T, Dalevi, D, Hu, P, Andersen, GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72: pp. 5069-5072 CrossRef
    27. Caporaso, JG, Bittinger, K, Bushman, FD, DeSantis, TZ, Andersen, GL, Knight, R (2010) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26: pp. 266-267 CrossRef
    28. Price, MN, Dehal, PS, Arkin, AP (2010) FastTree 2 鈥?approximately maximum-likelihood trees for large alignments. PLoS One 5: pp. e9490 CrossRef
    29. Faith, DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61: pp. 1-10 CrossRef
    30. Lozupone, C, Knight, R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71: pp. 8228-8235 CrossRef
    31. Coon, KL, Vogel, KJ, Brown, MR, Strand, MR (2014) Mosquitoes rely on their gut microbiota for development. Mol Ecol 23: pp. 2727-2739 CrossRef
    32. Osei-Poku, J, Mbogo, CM, Palmer, WJ, Jiggins, FM (2012) Deep sequencing reveals extensive variation in the gut microbiota of wild mosquitoes from Kenya. Mol Ecol 21: pp. 5138-5150 CrossRef
    33. Gimnig, JE, Ombok, M, Otieno, S, Kaufman, MG, Vulule, JM, Walker, ED (2002) Density-dependent development of Anopheles gambiae (Diptera: Culicidae) larvae in artificial habitats. J Med Entomol 39: pp. 162-172 CrossRef
    34. Kaufman, MG, Wanja, E, Maknojia, S, Bayoh, MN, Vulule, JM, Walker, ED (2006) Importance of algal biomass to growth and development of Anopheles gambiae larvae. J Med Entomol 43: pp. 669-676 CrossRef
    35. Kaufman, MG, Walker, ED, Smith, TW, Merritt, RW, Klug, MJ (1999) Effects of larval mosquitoes (Aedes triseriatus) and stemflow on microbial community dynamics in container habitats. Appl Environ Microbiol 65: pp. 2661-2673
    36. Zouache, K, Raharimalala, FN, Raquin, V, Tran-Van, V, Raveloson, LHR, Ravelonandro, P, Mavingui, P (2011) Bacterial diversity of field-caught mosquitoes, Aedes albopictus and Aedes aegypti, from different geographic regions of Madagascar. FEMS Microbiol Ecol 75: pp. 377-389 CrossRef
    37. Boissi猫re, A, Tchioffo, MT, Bachar, D, Abate, L, Marie, A, Nsango, SE, Shahbazkia, HR, Awono-Ambene, PH, Levashina, EA, Christen, R, Morlais, I (2012) Midgut microbiota of the malaria mosquito vector Anopheles gambiae and interactions with Plasmodium falciparum infection. PLoS Pathog 8: pp. e1002742 CrossRef
    38. Xu, Y, Chen, S, Kaufman, MG, Maknojia, S, Bagdasarian, M, Walker, ED (2008) Bacterial community structure in tree hole habitats of Ochlerotatus triseriatus: influences of larval feeding. J Am Mosq Control Assoc 24: pp. 219-227 CrossRef
    39. Terenius, O, Lindh, JM, Eriksson-Gonzales, K, Bussi猫re, L, Laugen, AT, Bergquist, H, Titanji, K, Faye, I (2012) Midgut bacterial dynamics in Aedes aegypti. FEMS Microbiol Ecol 80: pp. 556-565 CrossRef
    40. Demaio, J, Pumpuni, CB, Kent, M, Beier, JC (1996) The midgut bacterial flora of wild Aedes triseriatus, Culex pipiens, and Psorophora columbiae mosquitoes. Am J Trop Med Hyg 54: pp. 219-223
    41. Gusm茫o, DS, Santos, AV, Marini, DC, Bacci, M, Berbert-Molina, MA, Lemos, FJA (2010) Culture-dependent and culture-independent characterization of microorganisms associated with Aedes aegypti (Diptera: Culicidae) (L.) and dynamics of bacterial colonization in the midgut. Acta Trop 115: pp. 275-281 CrossRef
    42. Chandel, K, Mendki, MJ, Parikh, RY, Kulkarni, G, Tikar, SN, Sukumaran, D, Prakash, S, Parashar, BD, Shouche, YS, Veer, V (2013) Midgut microbial community of Culex quinquefasciatus mosquito populations from India. PLoS One 8: pp. e80453 CrossRef
    43. Valiente Moro, C, Tran, FH, Nantenaina Raharimalala, F, Ravelonandro, P, Mavingui, P (2013) Diversity of culturable bacteria including Pantoea in wild mosquito Aedes albopictus. BMC Microbiol 13: pp. 70 CrossRef
    44. Duguma, D, Rugman-Jones, P, Kaufman, MG, Hall, MW, Neufeld, JD, Stouthamer, R, Walton, WE (2013) Bacterial communities associated with Culex mosquito larvae and two emergent aquatic plants of bioremediation importance. PLoS One 8: pp. e72522 CrossRef
    45. Rani, A, Sharma, A, Rajagopal, R, Adak, T, Bhatnagar, R (2009) Bacterial diversity analysis of larvae and adult midgut microflora using culture-dependent and culture-independent methods in lab-reared and field-collected Anopheles stephensi-an Asian malarial vector. BMC Microbiol 9: pp. 96 CrossRef
    46. Gusmao, DS, Santos, AV, Marini, DC, Russo Ede, S, Peixoto, AM, Bacci Junior, M, Berbert-Molina, MA, Lemos, FJ (2007) First isolation of microorganisms from the gut diverticulum of Aedes aegypti (Diptera: Culicidae): new perspectives for an insect-bacteria association. Mem Inst Oswaldo Cruz 102: pp. 919-924 CrossRef
    47. Ramirez, JL, Souza-Neto, J, Torres Cosme, R, Rovira, J, Ortiz, A, Pascale, JM, Dimopoulos, G (2012) Reciprocal tripartite interactions between the Aedes aegypti midgut microbiota, innate immune system and dengue virus influences vector competence. PLoS Negl Trop Dis 6: pp. e1561 CrossRef
    48. Luxananil, P, Atomi, H, Panyim, S, Imanaka, T (2001) Isolation of bacterial strains colonizable in mosquito larval guts as novel host cells for mosquito control. J Biosci Bioeng 92: pp. 342-345 CrossRef
    49. Chouaia, B, Rossi, P, Montagna, M, Ricci, I, Crotti, E, Damiani, C, Epis, S, Faye, I, Sagnon, NF, Alma, A, Favia, G, Daffonchio, D, Bandi, C (2010) Molecular evidence for multiple infections as revealed by typing of Asaia bacterial symbionts of four mosquito species. Appl Environ Microbiol 76: pp. 7444-7450 CrossRef
    50. Wistreich, GA, Chao, J (1963) Microorganisms from the Midgut of Larval and Adult Aedes aegypti (Linnaeus). J Insect Pathol 5: pp. 56-60
    51. Ogier, JC, Son, O, Gruss, A, Tailliez, P, Delacroix-Buchet, A (2002) Identification of the bacterial microflora in dairy products by temporal temperature gradient gel electrophoresis. Appl Environ Microbiol 68: pp. 3691-3701 CrossRef
    52. Oswald, WE, Lescano, AG, Bern, C, Calderon, MM, Cabrera, L, Gilman, RH (2007) Fecal contamination of drinking water within Peri-Urban households, Lima. Peru Am J Trop Med Hyg 77: pp. 699-704
    53. Han, AM, Oo, KN, Midorikawa, Y, Shwe, S (1989) Contamination of drinking water during collection and storage. Trop Geogr Med 41: pp. 138-140
    54. Mattioli, MC, Boehm, AB, Davis, J, Harris, AR, Mrisho, M, Pickering, AJ (2014) Enteric pathogens in stored drinking water and on caregiver鈥檚 hands in Tanzanian households with and without reported cases of child diarrhea. PLoS One 9: pp. e84939 CrossRef
  • 刊物主题:Parasitology; Infectious Diseases; Tropical Medicine; Entomology;
  • 出版者:BioMed Central
  • ISSN:1756-3305
文摘
Background Domestic water storage containers constitute major Aedes aegypti breeding sites. We present for the first time a comparative analysis of the bacterial communities associated with Ae. aegypti larvae and water from domestic water containers. Methods The 16S rRNA-temporal temperature gradient gel electrophoresis (TTGE) was used to identify and compare bacterial communities in fourth-instar Ae. aegypti larvae and water from larvae positive and negative domestic containers in a rural village in northeastern Thailand. Water samples were cultured for enteric bacteria in addition to TTGE. Sequences obtained from TTGE and bacterial cultures were clustered into operational taxonomic units (OTUs) for analyses. Results Significantly lower OTU abundance was found in fourth-instar Ae. aegypti larvae compared to mosquito positive water samples. There was no significant difference in OTU abundance between larvae and mosquito negative water samples or between mosquito positive and negative water samples. Larval samples had significantly different OTU diversity compared to mosquito positive and negative water samples, with no significant difference between mosquito positive and negative water samples. The TTGE identified 24 bacterial taxa, belonging to the phyla Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes and TM7 (candidate phylum). Seven of these taxa were identified in larval samples, 16 in mosquito positive and 13 in mosquito negative water samples. Only two taxa, belonging to the phyla Firmicutes and Actinobacteria, were common to both larvae and water samples. Bacilli was the most abundant bacterial class identified from Ae. aegypti larvae, Gammaproteobacteria from mosquito positive water samples, and Flavobacteria from mosquito negative water samples. Enteric bacteria belonging to the class Gammaproteobacteria were sparsely represented in TTGE, but were isolated from both mosquito positive and negative water samples by selective culture. Conclusions Few bacteria from water samples were identified in fourth-instar Ae. aegypti larvae, suggesting that established larval bacteria, most likely acquired at earlier stages of development, control the larval microbiota. Further studies at all larval stages are needed to fully understand the dynamics involved. Isolation of enteric bacteria from water samples supports earlier outcomes of E. coli contamination in Ae. aegypti infested domestic containers, suggesting the need to further explore the role of enteric bacteria in Ae. aegypti infestation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700