用户名: 密码: 验证码:
A multivariate geostatistical approach for landscape classification from remotely sensed image data
详细信息    查看全文
  • 作者:Ronny Vallejos (1)
    Adriana Mallea (2)
    Myriam Herrera (3)
    Silvia Ojeda (4)

    1. Departamento de Matem谩tica
    ; Universidad T茅cnica Federico Santa Mar铆a ; Avenida Espa帽a 1680 ; Valparaiso ; Chile
    2. Departamento de Matem谩tica
    ; Universidad Nacional de San Juan ; San Juan ; Argentina
    3. Facultad de Ciencias Exactas F铆sicas y Naturales
    ; Universidad Nacional de San Juan ; San Juan ; Argentina
    4. Facultad de Matem谩tica
    ; Astronom铆a y F铆sica ; Universidad Nacional de C贸rdoba ; Valparaiso ; Argentina
  • 关键词:Multivariate spatial process ; Spatial association ; Codispersion matrix ; Dimensionality reduction ; Image classification
  • 刊名:Stochastic Environmental Research and Risk Assessment (SERRA)
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:29
  • 期:2
  • 页码:369-378
  • 全文大小:1,161 KB
  • 参考文献:1. Bernard-Michel C, Dout茅 S, Fauvel M, Gardes M, Girard S (2009) Retrieval of mars surface physical properties from omega hyperspectral images using regularized sliced inverse regression. J Geophys Res 114:E06005
    2. Bolthausen R (1982) On the central limit theorem for stationary random fields. Ann Probab 10:1047鈥?050 CrossRef
    3. Bosch A, Mu帽oz X, Mart铆 R (2007) A review: which is the best way to organize/classify images by content? Image Vis Comput 25:778鈥?91 CrossRef
    4. Cohen A (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20:37鈥?6 CrossRef
    5. Comon P (1994) Independent component analysis: a new concept? Signal Process 36:287鈥?14 CrossRef
    6. Cuevas F, Porcu E, Vallejos R (2013) Study of spatial relationships between two sets of variables: a nonparametric approach. J Nonparametric Stat 25:695鈥?14 CrossRef
    7. de Almeida E, de Medeiros A, Rosso O, Frery A (2012) Generalized statistical complexity of SAR imagery. Lectures Notes in Computer Science. Springer, Berlin, pp 656鈥?63
    8. Du J, Ma C (2012) Variogram matrix funtions for vector random fields with second-order increments. Math Geosci 44:411鈥?25 CrossRef
    9. Duda R, Hart P, Stork D (2001) Pattern classification. Wiley, New York
    10. Geniting T, Kleiber W, Schlather M (2010) Matrn cross-covariance functions for multivariate random fields. J Am Stat Assoc 105:1167鈥?177 CrossRef
    11. G贸mez D, Montero J (2011) Determining the accuracy in image supervised classification problems. EUSFLAT 1:342鈥?49
    12. G贸mez D, Biging G, Montero J (2008) Accuracy statistics for judging soft classification. Int J Remote Sens 29:693鈥?09 CrossRef
    13. Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, Oxford
    14. Guyon X (1982) Parameter estimation for a stationary process on a \(d\) -dimensional lattice. Biometrika 69:95鈥?05 CrossRef
    15. Jolliffe IT (2002) Principal component analysis. Springer, New York
    16. Kullback S, Leibler R (1951) On information and sufficiency. Ann Math Stat 22:79鈥?6 CrossRef
    17. Li KC (1991) Sliced inverse regression for dimensional reduction (with discussion). J Am Stat Assoc 86:316鈥?42 CrossRef
    18. Li KC (1992) On principal hessian directions for data visualization and dimension reduction another application of stein鈥檚 lemma. J Am Stat Assoc 87:025鈥?039 CrossRef
    19. Lutkepohl H (2007) New introduction to multivariate time series analysis. Springer, Berlin
    20. Loog M, Duin PW (2004) Linear dimensionality reduction via heteroscedastic extension of lda: the chernoff criterion. IEEE Trans Pattern Anal Mach Intell 26:732鈥?39 CrossRef
    21. Ma C (2008) Recent developments on the construction of spatio-temporal covariance models. Stoch Environ Res Risk Assess 22:S39鈥揝47 CrossRef
    22. Ma C (2010) Elliptically contoured random fields in space and time. J Phys A 43:165209 CrossRef
    23. Ma C (2011) Vector random fields with second-order moments ot second-order increments. Stoch Anal Appl 29:197鈥?15 CrossRef
    24. Matheron C (1965) Les Variables R茅gionalis茅es et leur Estimation. Masson, Paris
    25. Moustakas A, Hristopulos DT (2009) Estimating tree abundance from remotely sensed imagery in semi-arid and arid environments: bringing small trees to the light. Stoch Environ Res Risk Assess 23:111鈥?18 CrossRef
    26. Murray R (2011) Classification images: a review. J Vis 11:1鈥?5 CrossRef
    27. Ojeda S, Vallejos R, Lamberti P (2012) Measure of similarity between images based on the codispersion coefficient. J Electron Imaging 21:023019 CrossRef
    28. Osorio F, Vallejos R, Cuevas, F (2012) SpatialPack: a package to assess the association between two spatial processes. R package version 0.2. http://cran.r-project.org/web/packages/SpatialPack/
    29. Pontius RG (2009) Quantification error versus location error in comparison of categorical maps. Photogramm Eng Remote Sens 66:1011鈥?016
    30. Porcu E, Gregori P, Mateu J (2006) Nonseparable stationary anisotropic spacetime covariance functions. Stoch Environ Res Risk Assess 21:113鈥?22 CrossRef
    31. Pringle MJ, Lark RM (2006) Spatial analysis of model error: illustrated by soil carbon dioxide emissions. Vadose Zone J 5:168鈥?83 CrossRef
    32. Richards JA (1993) Remote sensing digital image analysis, 2nd edn. Springer, New York CrossRef
    33. Rueda L, Herrera M (2008) Linear dimensionality reduction by maximizing the chernoff distance in the transformed space. Pattern Recognit 41:3138鈥?152 CrossRef
    34. Rukhin AL (2006) Association characteristics in spatial statistics. Math Methods Stat 15:309鈥?26
    35. Rukhin AL, Vallejos R (2008) Codispersion coefficient for spatial and temporal series. Stat Probab Lett 78:1290鈥?300 CrossRef
    36. Stehman SV, Czaplewski RL (2003) Introduction to special issue on map accuracy. Environ Ecol Stat 10:301鈥?08 CrossRef
    37. Swain PH, King RC (1973) Two effective feature selection criteria for multispectral remote sensing. In: Proceedings of the First International Conference on the Pattern Recognition. pp 536鈥?40
    38. Vallejos R (2008) Assessing the association between two spatial or temporal sequences. J Appl Stat 35:1323鈥?343 CrossRef
    39. Vallejos R (2012a) Testing for the absence of correlation between two spatial or temporal sequences. Pattern Recognit Lett 33:1741鈥?748 CrossRef
    40. Vallejos R, Ojeda S (2012b) Image segmentation and time series clustering based on spatial and temporal ARMA processes. In: Advances in Image Segmentation, P-G Peter Ho (ed) INTECH
    41. ver Hoef JM, Barry RP (1998) Constructing and fittiing models for cokriging and multivariate spatial prediction. J Stat Plan Inference 69:275鈥?94 CrossRef
    42. Whittle P (1954) On stationary processes in the plane. Biometrika 41:434鈥?49 CrossRef
    43. Wu HM, Lu HH (2007) Iterative sliced inverse regression for segmentation of ultrasound and mr images. Pattern Recognit 40:3492鈥?502 CrossRef
    44. Zou H, Hastie T, Tibshirani R (2006) Sparse principal component analysis. J Comput Graph Stat 15:265鈥?86 CrossRef
    45. Zukovic M, Hristopulos DT (2013) Reconstruction of missing data in remote sensing images using conditional stochastic optimization with global geometric constraints. Stoch Environ Res Risk Assess 27:785鈥?06 CrossRef
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Mathematical Applications in Environmental Science
    Mathematical Applications in Geosciences
    Probability Theory and Stochastic Processes
    Statistics for Engineering, Physics, Computer Science, Chemistry and Geosciences
    Numerical and Computational Methods in Engineering
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1436-3259
文摘
This paper proposes a methodology to address the classification of images that have been acquired from remote sensors. One common problem in classification is the high dimensionality of multivariate characteristics. The methodology we propose consists of reducing the dimensionality of the spectral bands associated with a multispectral satellite image. Such dimensionality reduction is accomplished by the use of the divergence of a modified Mahalanobis distance. Instead of using the covariance matrix of a multivariate spatial process, the codispersion matrix is considered which have some desirable asymptotic properties under very precise conditions. The consistency and asymptotic normality hold for a general class of processes that are a natural extension of the one-dimensional spatial processes for which the asymptotic properties were first established. The results allow the selection of a set of spectral bands to produce the highest value of divergence. Then, a supervised maximum likelihood method using the selected spectral bands is employed for landscape classification. An application with a real LANDSAT image is introduced to explore and visualize how our method works in practice.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700