用户名: 密码: 验证码:
A general thiol assay based on the suppression of fluorescence resonance energy transfer in magnetic-resin core-shell nanospheres coated with gold nanoparticles
详细信息    查看全文
  • 作者:Vanessa Román-Pizarro ; Umair Gulzar ; Juan Manuel Fernández-Romero
  • 关键词:Fluorescence surfactant enhancement ; Magnetic ; phenol/formaldehyde resin ; Gold nanospheres ; Fluorescence resonance energy transfer ; Thiols ; Water samples
  • 刊名:Microchimica Acta
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:182
  • 期:13-14
  • 页码:2285-2292
  • 全文大小:1,161 KB
  • 参考文献:1.Zhang F, Lees E, Amin F, Rivera-Gil P, Yang F, Mulvaney P, Parak WJ (2011) Polymer-coated nanoparticles: a universal tool for biolabelling experiments. Small 7:3113-127CrossRef
    2.Poljansek I, Krajnc M (2005) Characterization of phenol-formaldehyde prepolymer resins by In Line FT-IR spectroscopy. Acta Chim Slov 52:238-44
    3.Al-Imarah FJM, Al-Sawaad HZM (2011) Preparation and fluorescence studies for new naphthol resins. J Mater Environ Sci 2:233-38
    4.Sapsford KE, Berti L, Medintz IL (2006) Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations. Angew Chem Int Ed 45:4562-588CrossRef
    5.Chen NT, Cheng SH, Liu CP, Souris JS, Chen CT, Mou CY, Lo LW (2012) Recent advances in nanoparticles-based F?ster resonance energy transfer for biosensing, molecular imaging and drug release profiling. Int J Mol Sci 13:16598-6623CrossRef
    6.Ling J, Huang CZ (2010) Energy transfer with gold nanoparticles for analytical application in the field of biochemical and pharmaceutical science. Anal Methods 2:1439-447CrossRef
    7.Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739-779CrossRef
    8.Ge S, Lu J, Yan M, Yu F, Yu J, Sun X (2011) Fluorescence resonance energy transfer sensor between quantum dot donors and neutral red acceptors and its detection of BSA in micelles. Dyes Pigments 91:304-08CrossRef
    9.Mallick A, Purkayastha P, Chattopadhyay N (2007) Photoprocesses of excited molecules in confined liquid environments: an overview. J Photochem Photobiol C 8:109-27CrossRef
    10.Yang P, Zhao Y, Lu Y, Xu QZ, Xu XW, Dong L, Yu SH (2011) Phenol formaldehyde resin nanoparticles loaded with CdTe quantum dots: a fluorescence resonance energy transfer probe for optical visual detection of copper(II) ions. ACS Nano 5:2147-154CrossRef
    11.Yang P, Xu QZ, Jin SY, Zhao Y, Lu Y, Xu XW, Yu SH (2012) Synthesis of Fe3O4@phenol formaldehyde resin core-shell nanospheres loaded with Au nanoparticles as magnetic FRET nanoprobes for detection of thiols in living cells. Chem Eur J 18:1154-160CrossRef
    12.Dalle-Donne I, Rossi R (2009) Analysis of thiols. J Chromatogr B 877:3271-273CrossRef
    13.Gui R, Wang Y, Sun J (2014) Protein-stabilized fluorescent nanocrystals consisting of a gold core and silver shell for detecting the total amount of cysteine and homocysteine. Microchim Acta 181:1231-238CrossRef
    14.Chao MR, Hu CW, Chen JL (2014) Fluorescent turn-on detection of cysteine using a molecularly imprinted polyacrylate linked to allylthiol-capped CdTe quantum dots. Microchim Acta 181:1085-091CrossRef
    15.Timur S, Odaci D, Dincer A, Zihnioglu F, Telefoncu A, Gorton L (2007) Sulfhydryl oxidase modified composite electrode for the detection of reduced thiolic compounds. Sensors Actuators B 125:234-39CrossRef
    16.Toyo’oka T (2009) Recent advances in separation and detection methods for thiol compounds in biological samples. J Chromatogr B 877:3318-330CrossRef
    17.Zu Y (2009) Molecular and nanoparticle postcolumn reagents for assay of low-molecular-mass biothiols using high-performance liquid chromatography. J Chromatogr B 877:3358-365CrossRef
    18.Al-Farawati R, Van den Berg CMG (2001) Thiols in coastal waters of the western north Sea and english channel. Environ Sci Technol 35:1902-911CrossRef
    19.Zhang J, Wang F, House JD, Page B (2004) Thiols in wetland interstitial waters and their role in mercury and methylmercury speciation. Limnol Oceanogr 49:2276-286CrossRef
    20.Vairavamurthy MA, Goldenberg WS, Ouyang S, Khalid S (2000) The interaction of hydrophilic thiols with cadmium: investigation with a simple model, 3-mercaptopropionic acid. Mar Chem 70:181-89CrossRef
    21.Tang D, Wen LS, Santschi PH (2000) Analysis of biogenic thiols in natural water samples by high-performance liquid chromatographic separation and fluorescence detection with ammonium 7-fluorobenzo-2-oxa-1,3-diazole-4sulfonate (SBD-F). Anal Chim Acta 408:299-07CrossRef
    22.Tang D, Shafer MM, Vang K, Karner DA, Armstrong DE (2003) Determination of dissolved thiols using solid-phase extraction and liquid chromatographic determination of fluorescently derivatized thiolic compounds. J Chromatogr A 998:31-0CrossRef
    23.Liem-Nguyen V, Bouchet S, Bj?rn E (2015) Determination of sub-nanomolar levels of low molecular mass thiols in natural waters by liquid chromatography tandem mass spectrometry after derivatization with p-(hydroxymercuri) benzoate and online preconcentration. Anal Chem 87:1089-096CrossRef
    24.Cui YR, Hong C, Zhou YL, Li Y, Gao XM, Zhang XX (2011) Synthesis of orientedly bioconjugated core/shell Fe3O4@Au magnetic nanoparticles for cell separation. Talanta 85:1246-252CrossRef
    25.You LJ, Xu S, Ma WF, Li D, Zhang YT, Guo J, Hu JJ, Wang CC (2012) Ultrafast hydrotermal synthesis of high quality magnetic core phenol-formaldehyde shell composite microspheres using the microwave
  • 作者单位:Vanessa Román-Pizarro (1)
    Umair Gulzar (1)
    Juan Manuel Fernández-Romero (1)
    Agustina Gómez-Hens (1)

    1. Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry (IUQFN-UCO) Campus of Rabanales, Marie Curie Building (Annex) University of Córdoba, E-14071, Córdoba, Spain
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Analytical Chemistry
    Inorganic Chemistry
    Physical Chemistry
    Characterization and Evaluation Materials
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
  • 出版者:Springer Wien
  • ISSN:1436-5073
文摘
A simple, rapid and sensitive fluorescence resonance energy transfer (FRET) method is presented for the determination of thiols. It is based on the thiol-induced enhancement effect of the surfactant sodium dodecyl sulfate (SDS) on the efficiency of fluorescence resonance energy transfer (FRET) in nanospheres consisting of a magnetic (Fe3O4) core and a phenol-formaldehyde resin (PFR) shell containing gold nanoparticles (AuNPs). The luminescence of the core-shell nanospheres at excitation/emission wavelengths of 390/445 nm, respectively, is quenched by the AuNPs which act as energy acceptors. The interaction of AuNPs with thiol compounds in the presence of SDS suppresses FRET and gives rise to a fluorescent signal whose intensity is proportional to the thiol concentration. The analytical features of seven thiols (homocysteine, thioglycolic acid, glutathione, dodecanethiol, cysteamine, cysteine and N-acetylcysteine) were studied. Detection limits are in the range from 0.14 to 0.49 μmol L?. The precision of the method, expressed as the relative standard deviation, ranges from 0.4 to 4.9 %. The method was applied to the determination of total thiols in water samples with recovery values between 88.7 and 104.6 %.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700