用户名: 密码: 验证码:
Residual lignin inhibits thermal degradation of cellulosic fiber sheets
详细信息    查看全文
  • 作者:Emilia Vänskä ; Tuomas Vihelä ; Maria Soledad Peresin ; Jari Vartiainen
  • 关键词:Antioxidant properties ; Refining ; Residual lignin ; Strength loss ; Thermal degradation ; Thermal yellowing
  • 刊名:Cellulose
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:23
  • 期:1
  • 页码:199-212
  • 全文大小:815 KB
  • 参考文献:Andersson C (2008) New ways to enhance the functionality of paperboard by surface treatment—a review. Pack Technol Sci 21:339–373. doi:10.​1002/​pts.​823 CrossRef
    Arshanitsa A, Ponomarenko J, Dizhbite T, Andersone A, Gosselink RJA, Van Der Putten J, Lauberts M, Telysheva G (2013) Fractionation of technical lignins as a tool for improvement of their antioxidant properties. J Anal Appl Pyrolysis 103:78–85. doi:10.​1016/​j.​jaap.​2012.​12.​023 CrossRef
    Baptista C, Robert D, Duarte AP (2008) Relationship between lignin structure and delignification degree in Pinus pinaster kraft pulps. Bioresour Technol 99:2349–2356. doi:10.​1016/​j.​biortech.​2007.​05.​012 CrossRef
    Beyer M, Lind A, Koch H, Fischer K (1999) Heat-induced yellowing of TCF-bleached sulphite pulps—mechanistic aspects and factors that influence that process. J Pulp Pap Sci 25:47–51
    Beyer M, Koch H, Fischer K (2006) Role of hemicelluloses in the formation of chromophores during heat treatment of bleached chemical pulps. Macromol Sympos 232:98–106. doi:10.​1002/​masy.​200551412 CrossRef
    Boeva R, Radeva G, Hinkov P, Hinkov E (2012) Thermal ageing of different kinds of fiber materials: a kinetic study. J Univ Chem Technol Met 47:37–42
    Borrega M, Tolonen LK, Bardot F, Testova L, Sixta H (2013) Potential of hot water extraction of birch wood to produce high-purity dissolving pulp after alkaline pulping. Bioresour Technol 135:665–671. doi:10.​1016/​j.​biortech.​2012.​11.​107 CrossRef
    Brebu M, Vasile C (2010) Thermal degradation of lignin—a review. Cell Chem Technol 44:353–363
    Castle L, Jickells SM, Gilbert J, Harrison N (1990) Migration testing of plastics and microwave-active materials for high-temperature food-use applications. Food Addit Contam 7:779–797. doi:10.​1080/​0265203900937394​0 CrossRef
    Chirat C, De La Chapelle V (1999) Heat- and light-induced brightness reversion of bleached chemical pulps. J Pulp Pap Sci 25:201–205
    Cui C, Sadeghifar H, Sen S, Argyropoulos DS (2013) Toward thermoplastic lignin polymers; part II: thermal and polymer characteristics of kraft lignin and derivatives. BioResources 8:864–886
    Dizhbite T, Telysheva G, Jurkjane V, Viesturs U (2004) Characterization of the radical scavenging activity of lignins—natural antioxidants. Bioresour Technol 95:309–317. doi:10.​1016/​j.​biortech.​2004.​02.​024 CrossRef
    Fardim P, Durán N (2003) Modification of fibre surfaces during pulping and refining as analysed by SEM, XPS and ToF-SIMS. Colloids Surf A Physicochem Eng Asp 223:263–276. doi:10.​1016/​S0927-7757(03)00149-3 CrossRef
    Fenner RA, Lephardt JO (1981) Examination of the thermal decomposition of Kraft pine lignin by Fourier transform infrared evolved gas analysis. J Agric Food Chem 29:846–849CrossRef
    Ferrer A, Quintana E, Filpponen I, Solala I, Vidal T, Rodríguez A, Laine J, Rojas OJ (2012) Effect of residual lignin and heteropolysaccharides in nanofibrillar cellulose and nanopaper from wood fibers. Cellulose 19:2179–2193. doi:10.​1007/​s10570-012-9788-z CrossRef
    Gierer J (1980) Chemical aspects of kraft pulping. Wood Sci Technol 14:241–266. doi:10.​1007/​BF00383453 CrossRef
    Giertz HW (1957) The effects of beating on individual fibres, fundamentals of papermaking fibres. Transactions of the 1st fundamental research symposium, Cambridge, pp 389–409
    Giertz HW (1964) Contribution to the theory of tensile strength. In: Proceedings of European TAPPI conference on beating, Venice, Italy, pp 39–47
    Granström A, Eriksson T, Gellerstedt G, Rööst C, Larsson P (2001) Variables affecting the thermal yellowing of TCF-bleached birch kraft pulps. Nor Pulp Pap Res J 16:18–23CrossRef
    Gurnagul N, Page DH, Paice MG (1992) The effect of cellulose degradation on the strength of wood pulp fibers. Nord Pulp Pap Res J 7:152–154CrossRef
    Hill DJT, Le TT, Darveniza M, Saha T (1995) A study of degradation of cellulosic insulation materials in a power transformer. Part 2: tensile strength of cellulose insulation paper. Polym Degrad Stab 49:429–435. doi:10.​1016/​0141-3910(95)00100-Z CrossRef
    Howard RC, Bichard W (1992) Basic effects of recycling on pulp properties. J Pulp Pap Sci 18:J151–J159
    Jakab E (1997) Thermal decomposition of wood and cellulose in the presence of solvent vapors. Ind Eng Chem Res 36:2087–2095CrossRef
    Johansson C, Bras J, Mondragon I, Nechita P, Plackett D, Šimon P, Svetec DG, Virtanen S, Baschetti MG, Breen C, Clegg F, Aucejo S (2012) Renewable fibers and bio-based materials for packaging applications—a review of recent developments. BioResources 7:2506–2552CrossRef
    Kačík F, Kačíková D, Jablonský M, Katuščák S (2009) Cellulose degradation in newsprint paper ageing. Polym Degrad Stab 94:1509–1514. doi:10.​1016/​j.​polymdegradstab.​2009.​04.​033 CrossRef
    Kasaai MR (2002) Comparison of various solvents for determination of intrinsic viscosity and viscometric constants for cellulose. J Appl Polym Sci 86:2189–2193. doi:10.​1002/​app.​11164 CrossRef
    Kim H-S, Kim S, Kim H-J, Yang H-S (2006) Thermal properties of bio-flour-filled polyolefin composites with different compatibilizing agent type and content. Thermochim Acta 451:181–188. doi:10.​1016/​j.​tca.​2006.​09.​013 CrossRef
    Kjellgren H, Gällstedt M, Engström G, Järnström L (2006) Barrier and surface properties of chitosan-coated greaseproof paper. Carbohydr Polym 65:453–460. doi:10.​1016/​j.​carbpol.​2006.​02.​005 CrossRef
    Koch G (2008) Raw Material for Pulp. In: Sixta H (ed) Hand book of pulp, Volume 1. WILEY-VCH, Weinheim, pp 21-68. DOI: 10.​1002/​9783527619887.​ch2
    Laine J, Stenius P, Carlsson G, Ström G (1996) The effect of ECF and TCF bleaching on the surface chemical composition of kraft pulp as determined by ESCA. Nord Pulp Pap Res J 11:201–210CrossRef
    Logenius L, Friman L, Agnemo R (2008) The influence of temperature and moisture on the optical properties of cellulose in the presence of metal chlorides and glucuronic acid. Nord Pulp Pap Res J 23:72–80CrossRef
    Łojewska J, Miśkowiec P, Łojewski T, Proniewicz LM (2005) Cellulose oxidative and hydrolytic degradation: in situ FTIR approach. Polym Degrad Stab 88:512–520CrossRef
    Łojewski T, Ziȩba K, Knapik A, Bagniuk J, Lubańska A, Łojewska J (2010) Evaluating paper degradation progress. Cross-linking between chromatographic, spectroscopic and chemical results. Appl Phys A 100:809–821. doi:10.​1007/​s00339-010-5657-5 CrossRef
    Mancera C, El Mansouri N-E, Vilaseca F, Ferrando F, Salvado J (2011) The effect of lignin as a natural adhesive on the physico-mechanical properties of vitis vinifera fiberboards. BioResources 6:2851–2860
    Matsuoka S, Kawamoto H, Saka S (2011) Reducing end-group of cellulose as a reactive site for thermal discoloration. Polym Degrad Stab 96:1242–1247. doi:10.​1016/​j.​polymdegradstab.​2011.​04.​009 CrossRef
    Nuopponen M, Vuorinen T, Jämsä S, Viitaniemi P (2004) Thermal modifications in softwood studied by FT-IR and UV resonance Raman spectroscopies. J Wood Chem Technol 24:13–26. doi:10.​1081/​WCT-120035941 CrossRef
    Peelman N, Ragaert P, De Meulenaer B, Adons D, Peeters R, Cardon L, Van Impe F, Devlieghere F (2013) Application of bioplastics for food packaging. Trends Food Sci Tech 32:128–141. doi:10.​1016/​j.​tifs.​2013.​06.​003 CrossRef
    Rojo E, Peresin MS, Sampson WW, Hoeger IC, Vartiainen J, Laine J, Rojas OJ (2015) Comprehensive elucidation of the effect of residual lignin on the physical, barrier, mechanical and surface properties of nanocellulose films. Green Chem 53:345–355. doi:10.​1039/​c4gc02398f
    Schmidt JA, Rye CS, Gurnagul N (1995) Lignin inhibits autoxidative degradation of cellulose. Polym Degrad Stab 49:291–297CrossRef
    Seth RS, Page DH (1996) The problem of using Page’s equation to determine loss in shear strength of fiber-fiber bonds upon pulp drying. Tappi J 79:206–210
    Shao Z, Li K (2006) The effect of fiber surface lignin on interfiber bonding. J Wood Chem Technol 26:231–244. doi:10.​1080/​0277381060102343​8 CrossRef
    Sivonen H, Nuopponen M, Maunu SL, Sundholm F, Vuorinen T (2003) Carbon-thirteen cross-polarization magic angle spinning nuclear magnetic resonance and Fourier transform infrared studies of thermally modified wood exposed to brown and soft rot fungi. Appl Spectrosc 57:266–273. doi:10.​1366/​0003702033215581​64 CrossRef
    Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2011) Determination of structural carbohydrates and lignin in biomass. National Renewable Energy Laboratory, Golden
    Song YS, Begley T, Paquette K, Komolprasert V (2003) Effectiveness of polypropylene film as a barrier to migration from recycled paperboard packaging to fatty and high-moisture food. Food Addit Contam 20:875–883. doi:10.​1080/​0265203031000159​7592 CrossRef
    Spence KL, Venditti RA, Habibi Y, Rojas OJ, Pawlak JJ (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: mechanical processing and physical properties. Bioresour Technol 101:5961–5968. doi:10.​1016/​j.​biortech.​2010.​02.​104 CrossRef
    Vainio AK, Paulapuro H (2007) Interfiber bonding and fiber segment activation in paper. BioResources 2:442–458
    Vänskä E, Vuorinen T (2015) Effect of cellulase-assisted refining on the thermal degradation of bleached high-density paper. Holzforschung 69:703–712. doi:10.​1515/​hf-2014-0194 CrossRef
    Vänskä E, Luukka M, Solala I, Vuorinen T (2014) Effect of water vapor in air on thermal degradation of paper at high temperature. Polym Degrad Stab 99:283–289. doi:10.​1016/​j.​polymdegradstab.​2013.​10.​020 CrossRef
    Vishtal A, Retulainen E (2012) Deep-drawing of paper and paperboard: the role of material properties. BioResources 7:4424–4450
    Wahlström T, Lundh A, Hansson T, Fellers C (2000) Biaxial straining of handsheets during drying - effect on delamination resistance. Nord Pulp Pap Res J 15:237–242CrossRef
    Zanoni B, Peri C, Bruno D (1995) Modelling of browning kinetics of bread crust during baking. Lebensm Wiss Technol 28:604–609. doi:10.​1016/​0023-6438(95)90008-X CrossRef
  • 作者单位:Emilia Vänskä (1)
    Tuomas Vihelä (1)
    Maria Soledad Peresin (2)
    Jari Vartiainen (2)
    Michael Hummel (1)
    Tapani Vuorinen (1)

    1. Department of Forest Products Technology, School of Chemical Technology, Aalto University, P.O. Box 16300, 00076, Aalto, Finland
    2. VTT Technical Research Centre of Finland, P.O. Box 1000, 02044, Espoo, Finland
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Bioorganic Chemistry
    Physical Chemistry
    Organic Chemistry
    Polymer Sciences
  • 出版者:Springer Netherlands
  • ISSN:1572-882X
文摘
The market for cellulosic fiber based food packaging applications is growing together with the importance of improving the thermal durability of these fibers. To shed light on this, we investigated the role of residual lignin in pulp on the thermal stability of refined pulp sheets. The unbleached, oxygen delignified, and fully bleached pulp sheets were studied after four separate refining degrees. Comparison by Gurley air resistance, Bendtsen porosity, and the oxygen transmission rate tests showed that lignin containing sheets had better air and oxygen barrier properties than fully bleached sheets. Sheet density and light scattering coefficient measurements further confirmed that the lignin containing pulps underwent more intense fibrillation upon refining that changed the barrier properties of the sheets. Thermal treatments (at 225 °C, 20 and 60 min, in water vapor atmospheres of 1 and 75 v/v %) were applied to determine the thermal durability of the sheets. The results revealed that the residual lignin in pulps improved the thermal stability of the pulp sheets in the hot humid conditions. This effect was systematically studied by tensile strength, brightness, and light absorption coefficient measurements. The intrinsic viscosity results support the findings and suggest that lignin is able to hinder the thermal degradation of pulp polysaccharides. In spite of the fact that lignin is known to enhance the thermal yellowing of paper, no significant discoloration of the pulp sheets containing residual lignin was observed in the hot humid conditions (75 v/v %). Our results support the idea of lignin strengthening the thermal durability of paper. Keywords Antioxidant properties Refining Residual lignin Strength loss Thermal degradation Thermal yellowing

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700