用户名: 密码: 验证码:
Improving in-season estimation of rice yield potential and responsiveness to topdressing nitrogen application with Crop Circle active crop canopy sensor
详细信息    查看全文
  • 作者:Qiang Cao ; Yuxin Miao ; Jianning Shen ; Weifeng Yu ; Fei Yuan…
  • 关键词:Precision nitrogen management ; Crop Circle sensor ; In ; season nitrogen management ; Active crop canopy sensor ; GreenSeeker sensor ; Response index
  • 刊名:Precision Agriculture
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:17
  • 期:2
  • 页码:136-154
  • 全文大小:1,641 KB
  • 参考文献:Barnes, E., Clarke, T., Richards, S., Colaizzi, P., Haberland, J., & Kostrzewski, M., et al. (2000) Coincident detection of crop water stress, nitrogen status and canopy density using ground based multispectral data. In P. C. Robert, R. H. Rust, & W. E. Larson (Eds.), Proceedings of the 5th International Conference on Precision Agriculture, 16–19 July 2000. Bloomington, USA.
    Bijay-Singh, Sharma, R. K., Jaspreet-Kaur, Jat, M. L., Martin, K. L., Yadvinder-Singh, et al. (2011). Assessment of the nitrogen management strategy using an optical sensor for irrigated wheat. Agronomy for Sustainable Development, 31(3), 589–603.CrossRef
    Broge, N. H., & Leblanc, E. (2000). Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment, 76(2), 156–172.CrossRef
    Buschmann, C., & Nagel, E. (1993). In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation. International Journal of Remote Sensing, 14(4), 711–722.CrossRef
    Cao, Q., Cui, Z., Chen, X., Khosla, R., Dao, T. H., & Miao, Y. (2012). Quantifying spatial variability of indigenous nitrogen supply for precision nitrogen management in small scale farming. Precision Agriculture, 13(1), 45–61.CrossRef
    Cao, Q., Miao, Y., Feng, G., Gao, X., Li, F., Liu, B., et al. (2015). Active canopy sensing of winter wheat nitrogen status: An evaluation of two sensor systems. Computers and Electronics in Agriculture, 112, 54–67.CrossRef
    Cao, Q., Miao, Y., Wang, H., Huang, S., Cheng, S., Khosla, R., et al. (2013). Non-destructive estimation of rice plant nitrogen status with Crop Circle multispectral active canopy sensor. Field Crops Research, 154, 133–144.CrossRef
    Cassman, K. G., Dobermann, A., Walters, D. T., & Yang, H. (2003). Meeting cereal demand while protecting natural resources and improving environmental quality. Annual Review of Environment and Resources, 28(1), 315–358.CrossRef
    Chen, J. M. (1996). Evaluation of vegetation indices and a modified simple ratio for boreal applications. Canadian Journal of Remote Sensing, 22(3), 229–242.CrossRef
    Chen, X., Cui, Z., Fan, M., Vitousek, P., Zhao, M., Ma, W., et al. (2014). Producing more grain with lower environmental costs. Nature, 514(7523), 486–489.CrossRef PubMed
    Datt, B. (1999). Visible/near infrared reflectance and chlorophyll content in Eucalyptus leaves. International Journal of Remote Sensing, 20(14), 2741–2759.CrossRef
    Daughtry, C., Walthall, C., Kim, M., De Colstoun, E. B., & McMurtrey, J. (2000). Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment, 74(2), 229–239.CrossRef
    Dobermann, A., Witt, C., Dawe, D., Abdulrachman, S., Gines, H., Nagarajan, R., et al. (2002). Site-specific nutrient management for intensive rice cropping systems in Asia. Field Crops Research, 74(1), 37–66.CrossRef
    Eitel, J., Long, D., Gessler, P., & Smith, A. (2007). Using in situ measurements to evaluate the new RapidEye™ satellite series for prediction of wheat nitrogen status. International Journal of Remote Sensing, 28(18), 4183–4190.CrossRef
    FAOSTAT (2013). FAO statistical databases. http://​www.​fao.​org . Accessed 20 Dec 2014.
    Gitelson, A. A. (2004). Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. Journal of Plant Physiology, 161(2), 165–173.CrossRef PubMed
    Gitelson, A. A., Kaufman, Y. J., & Merzlyak, M. N. (1996). Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment, 58(3), 289–298.CrossRef
    Gitelson, A. A., Viña, A. S., Ciganda, V. N., & Rundquist, D. C. (2005). Remote estimation of canopy chlorophyll content in crops. Geophysical Research Letters, 32, L08403. doi:10.​01029/​02005GL022688 .CrossRef
    Gnyp, M. L., Miao, Y., Yuan, F., Ustin, S. L., Yu, K., Yao, Y., et al. (2014). Hyperspectral canopy sensing of paddy rice aboveground biomass at different growth stages. Field Crops Research, 155, 42–55.CrossRef
    Good, A. G., & Beatty, P. H. (2011). Fertilizing nature: a tragedy of excess in the commons. PLoS Biology, 9(8), e1001124.CrossRef PubMed PubMedCentral
    Grassini, P., Eskridge, K. M., & Cassman, K. G. (2013). Distinguishing between yield advances and yield plateaus in historical crop production trends. Nature Communications, 4, 2918–2928.CrossRef PubMed PubMedCentral
    Guo, J. H., Liu, X. J., Zhang, Y., Shen, J. L., Han, W. X., Zhang, W. F., et al. (2010). Significant acidification in major Chinese croplands. Science, 327(5968), 1008–1010.CrossRef PubMed
    Haboudane, D. (2004). Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 90(3), 337–352.CrossRef
    Haboudane, D., Miller, J. R., Tremblay, N., Zarco-Tejada, P. J., & Dextraze, L. (2002). Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment, 81(2), 416–426.CrossRef
    Harrell, D. L., Tubaña, B. S., Walker, T. W., & Phillips, S. B. (2011). Estimating rice grain yield potential using normalized difference vegetation index. Agronomy Journal, 103(6), 1717–1723.CrossRef
    Heffer, P. (2008). Assessment of fertilizer use by crop at the global level. Paris, France: International Fertilizer Industry Association (IFA).
    Jasper, J., Reusch, S., & Link, A. Active sensing of the N status of wheat using optimized wave-length combination: Impact of seed rate, variety and growth stage. In E. J. van Henten, D. Goense, & C. Lokhorst (Eds.), 9th Precision agriculture, Wageningen, The Netherlands, 2009 (pp. 23–30). Wageningen: Wageningen Academic Publishers.
    Johnson, G., & Raun, W. (2003). Nitrogen response index as a guide to fertilizer management. Journal of Plant Nutrition, 26(2), 249–262.CrossRef
    Justice, C. O., Vermote, E., Townshend, J. R. G., DeFries, R., Roy, D. P., Hall, D. K., et al. (1998). The moderate resolution imaging spectroradiometer (MODIS): Land remote sensing for global change research. IEEE Transactions on Geoscience and Remote Sensing, 36(4), 1228–1249.CrossRef
    Le Maire, G., Francois, C., & Dufrene, E. (2004). Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements. Remote Sensing of Environment, 89(1), 1–28.CrossRef
    Li, F., Miao, Y., Zhang, F., Cui, Z., Li, R., Chen, X., et al. (2009). In-season optical sensing improves nitrogen use efficiency for winter wheat. Soil Science Society of America Journal, 73(5), 1566–1574.CrossRef
    Miao, Y., Stewart, B. A., & Zhang, F. (2011). Long-term experiments for sustainable nutrient management in China. A review. Agronomy for Sustainable Development, 31(2), 397–414.CrossRef
    Mullen, R. W., Freeman, K. W., Raun, W. R., Johnson, G. V., Stone, M. L., & Solie, J. B. (2003). Identifying an in-season response index and the potential to increase wheat yield with nitrogen. Agronomy Journal, 95(2), 347–351.CrossRef
    Nosengo, N. (2003). Fertilized to death. Nature, 425, 894–895.CrossRef PubMed
    Peng, S., Buresh, R. J., Huang, J., Zhong, X., Zou, Y., Yang, J., et al. (2010). Improving nitrogen fertilization in rice by sitespecific N management. A review. Agronomy for Sustainable Development, 30(3), 649–656.CrossRef
    Qi, J., Chehbouni, A., Huete, A., Kerr, Y., & Sorooshian, S. (1994). A modified soil adjusted vegetation index. Remote Sensing of Environment, 48(2), 119–126.CrossRef
    Raper, T. B., Varco, J. J., & Hubbard, K. J. (2013). Canopy-based normalized difference vegetation index sensors for monitoring cotton nitrogen status. Agronomy Journal, 105(5), 1345–1354.CrossRef
    Raun, W. R., Solie, J. B., Johnson, G. V., Stone, M. L., Mullen, R. W., Freeman, K. W., et al. (2002). Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate application. Agronomy Journal, 94(4), 815–820.CrossRef
    Raun, W. R., Solie, J. B., & Stone, M. L. (2011). Independence of yield potential and crop nitrogen response. Precision Agriculture, 12(4), 508–518.CrossRef
    Raun, W. R., Solie, J. B., Stone, M. L., Martin, K. L., Freeman, K. W., Mullen, R. W., et al. (2005). Optical sensor-based algorithm for crop nitrogen fertilization. Communications in Soil Science and Plant Analysis, 36(19–20), 2759–2781.CrossRef
    Rondeaux, G., Steven, M., & Baret, F. (1996). Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 55(2), 95–107.CrossRef
    Roujean, J.-L., & Breon, F.-M. (1995). Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sensing of Environment, 51(3), 375–384.CrossRef
    Seck, P. A., Diagne, A., Mohanty, S., & Wopereis, M. C. S. (2012). Crops that feed the world 7: Rice. Food Security, 4(1), 7–24.CrossRef
    Sripada, R. P., Heiniger, R. W., White, J. G., & Meijer, A. D. (2006). Aerial color infrared photography for determining early in-season nitrogen requirements in corn. Agronomy Journal, 98(4), 968–977.CrossRef
    Tilman, D., Balzer, C., Hill, J., & Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences, 108(50), 20260–20264.CrossRef
    Tubaña, B., Harrell, D., Walker, T., Teboh, J., Lofton, J., & Kanke, Y. (2012). In-season canopy reflectance-based estimation of rice yield response to nitrogen. Agronomy Journal, 104, 1604–1611.CrossRef
    Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2), 127–150.CrossRef
    Wang, Y., & Yang, Y. (2001). Effects of agriculture reclamation on the hydrologic characteristics in the Sanjiang Plain, China. Chinese Geographical Science, 11(2), 163–167.CrossRef
    Wang, W., Yao, X., Yao, X., Tian, Y., Liu, X., Ni, J., et al. (2012). Estimating leaf nitrogen concentration with three-band vegetation indices in rice and wheat. Field Crops Research, 129, 90–98.CrossRef
    Wang, Z., Zhang, B., Zhang, S., Li, X., Liu, D., Song, K., et al. (2006). Changes of land use and of ecosystem service values in Sanjiang Plain, Northeast China. Environmental Monitoring and Assessment, 112(1–3), 69–91.CrossRef PubMed
    Xue, L., Li, G., Qin, X., Yang, L., & Zhang, H. (2014). Topdressing nitrogen recommendation for early rice with an active sensor in south China. Precision Agriculture, 15(1), 95–110.CrossRef
    Xue, L., & Yang, L. (2008). Recommendations for nitrogen fertiliser topdressing rates in rice using canopy reflectance spectra. Biosystems Engineering, 100(4), 524–534.CrossRef
    Yan, M., Deng, W., & Chen, P. (2002). Climate change in the Sanjiang Plain disturbed by large-scale reclamation. Journal of Geographical Sciences, 12(4), 405–412.CrossRef
    Yao, Y., Miao, Y., Cao, Q., Wang, H., Gnyp, M. L., Bareth, G., et al. (2014). In-season estimation of rice nitrogen status with an active crop canopy sensor. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(11), 4403–4413.CrossRef
    Yao, Y., Miao, Y., Huang, S., Gao, L., Ma, X., Zhao, G., et al. (2012). Active canopy sensor-based precision N management strategy for rice. Agronomy for Sustainable Development, 32(4), 925–933.CrossRef
    Zarco-Tejada, P. J., Miller, J., Morales, A., Berjón, A., & Agüera, J. (2004). Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops. Remote Sensing of Environment, 90(4), 463–476.CrossRef
    Zhang, F., Chen, X., & Vitousek, P. (2013). Chinese agriculture: An experiment for the world. Nature, 497(7447), 33–35.CrossRef PubMed
    Zhang, F., Cui, Z., Chen, X., Ju, X., Shen, J., Chen, Q., et al. (2012). Integrated nutrient management for food security and environmental quality in China. Advances in Agronomy, 116, 1–40.CrossRef
    Zhao, G., Miao, Y., Wang, H., Su, M., Fan, M., Zhang, F., et al. (2013). A preliminary precision rice management system for increasing both grain yield and nitrogen use efficiency. Field Crops Research, 154, 23–30.CrossRef
  • 作者单位:Qiang Cao (1) (2)
    Yuxin Miao (1)
    Jianning Shen (1)
    Weifeng Yu (1)
    Fei Yuan (3)
    Shanshan Cheng (1)
    Shanyu Huang (1) (4)
    Hongye Wang (1)
    Wen Yang (5)
    Fengyan Liu (5)

    1. International Center for Agro-Informatics and Sustainable Development (ICASD), Center for Resources, Environment and Food Security, China Agricultural University, Beijing, 100193, China
    2. National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
    3. Department of Geography, Minnesota State University, Mankato, MN, 56001, USA
    4. Institute of Geography, University of Cologne, 50923, Cologne, Germany
    5. Jiansanjiang Institute of Agricultural Sciences, Jiansanjiang, Heilongjiang, China
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Soil Science and Conservation
    Agriculture
    Meteorology and Climatology
    Statistics for Engineering, Physics, Computer Science, Chemistry and Geosciences
    Remote Sensing and Photogrammetry
  • 出版者:Springer Netherlands
  • ISSN:1573-1618
文摘
In-season site-specific nitrogen (N) management is a promising strategy to improve crop N use efficiency and reduce risks of environmental contamination. To successfully implement such precision management strategies, it is important to accurately estimate yield potential without additional topdressing N application (YP0) as well as precisely assess the responsiveness to additional N application (RI) during the growing season. Previous research has mainly used normalized difference vegetation index (NDVI) or ratio vegetation index (RVI) obtained from GreenSeeker active crop canopy sensor with two fixed bands in red and near-infrared (NIR) spectrums to estimate these two parameters. The development of three-band Crop Circle active sensor provides a potential to improve in-season estimation of YP0 and RI. The objectives of this study were twofold: (1) identify important vegetation indices obtained from Crop Circle ACS-470 sensor for estimating rice YP0 and RI; and (2) evaluate their potential improvements over GreenSeeker NDVI and RVI. Four site-years of field N rate experiments were conducted in 2012 and 2013 at the Jiansanjiang Experiment Station of China Agricultural University located in Northeast China. The GreenSeeker and Crop Circle ACS-470 active canopy sensor with green, red edge, and NIR bands were used to collect rice canopy reflectance data at different key growth stages. The results indicated that both the GreenSeeker (best R2 = 0.66 and 0.70, respectively) and Crop Circle (best R2 = 0.71 and 0.77, respectively) sensors worked well for estimating YP0 and RI at the stem elongation stage. At the booting stage, Crop Circle red edge optimized soil adjusted vegetation index (REOSAVI, R2 = 0.82) and green ratio vegetation index (R2 = 0.73) explained 26 and 22 % more variability in YP0 and RI, respectively, than GreenSeeker NDVI or RVI. At the heading stage, the GreenSeeker sensor indices became saturated and consequently could not be used for YP0 or RI estimation, while Crop Circle REOSAVI and normalized green index could still explain more than 70 % of YP0 and RI variability. It is concluded that both sensors performed similarly at the stem elongation stage, but significantly better results were obtained by the Crop Circle sensor at the booting and heading stages. Furthermore, the results revealed that Crop Circle green band-based vegetation indices performed well for RI estimation while the red edge-based vegetation indices were the best for estimating YP0 at later growth stages.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700