用户名: 密码: 验证码:
Direct Compression of Cellulose and Lignin Isolated by a New Catalytic Treatment
详细信息    查看全文
  • 作者:Anna Penkina (1)
    Osmo Antikainen (2)
    Maija Hakola (3)
    Sirpa Vuorinen (3)
    Timo Repo (3)
    Jouko Yliruusi (2)
    Peep Veski (1)
    Karin Kogermann (1)
    Jyrki Hein?m?ki (1)
  • 关键词:elasticity ; lignin ; plasticity ; pretreated cellulose ; tablet compression
  • 刊名:AAPS PharmSciTech
  • 出版年:2013
  • 出版时间:September 2013
  • 年:2013
  • 卷:14
  • 期:3
  • 页码:1129-1136
  • 全文大小:524KB
  • 参考文献:1. Rothen-Weinhold A, Dahn M, Gurny R. Formulation and technology aspects of controlled drug delivery in animals. PSTT. 2000;3(7):222-1.
    2. Ahmed I, Kasraian K. Pharmaceutical challenges in veterinary product development. Adv Drug Deliv Rev. 2002;54:871-2. CrossRef
    3. Jivraj M, Martini LG, Thomson CM. An overview of the different excipients useful for the direct compression of tablets. PSTT. 2000;3(2):58-3.
    4. Gonnissen Y, Remon JP, Vervaet C. Development of directly compressible powders via co-spray drying. Eur J Pharm Biopharm. 2007;67:220-. CrossRef
    5. Gohel MC, Parikh RK, Brahmbhatt BK, Shah AR. Preparation and assessment of novel coprocessed superdisintegrant consisting of crospovidone and sodium starch glycolate: a technical note. AAPS PharmSciTech. 2007;8(1), Article 9:E1-.
    6. Marwaha M, Sandhu D, Marwaha RK. Coprocessing of excipients: a review on excipient development for improved tabletting performance. Int J Appl Pharm. 2010;2(3):41-.
    7. Patel RP, Bhavsar M. Directly compressible materials via co-processing. Int J PharmTech Res. 2009;1(3):745-3.
    8. Klevan I, Nordstr?m J, Tho I, Alderborn G. A statistical approach to evaluate the potential use of compression parameters for classification of pharmaceutical powder materials. Eur J Pharm Biopharm. 2010;75:425-5. CrossRef
    9. Nordstr?m J, Klevan I, Alderborn G. A protocol for the classification of powder compression characteristics. Eur J Pharm Biopharm. 2012;80:209-6. CrossRef
    10. Weil J, Westgate P, Kohlmann K, Ladisch MR. Cellulose pretreatments of lignocellulosic substrates. Enzyme Microb Technol. 1994;16(11):1002-. CrossRef
    11. Tobyn MJ, McCarthy GP, Staniforth JN, Edge S. Physicochemical comparison between microcrystalline cellulose and solidified microcrystalline cellulose. Int J Pharm. 1998;169:183-4. CrossRef
    12. Kolakovic R, Peltonen L, Laaksonen T, Putkisto K, Laukkanen A, Hirvonen J. Spray-dried cellulose nanofibers as novel tablet excipient. AAPS PharmSciTech. 2011;12(4):1366-3. CrossRef
    13. Hatakeyama H, Hatakeyama T. Lignin structure, properties, and applications. Adv Polym Sci. 2010;232:1-3. CrossRef
    14. Li Y, Sarkanen S. Alkylated kraft lignin-based thermoplastic blends with aliphatic polyesters. Macromolecules. 2002;35:9707. CrossRef
    15. Doherty WOS, Mousavioun P, Fellows CM. Value-adding to cellulosic ethanol: lignin polymers. Ind Crop Prod. 2011;33:259-6. CrossRef
    16. Hakola M, Kallioinen A, Kemell M, Lahtinen P, Lankinen E, Leskel? M, / et al. Liberation of cellulose from the lignin cage: a catalytic pretreatment method for the production of cellulosic ethanol. ChemSusChem. 2010;3(10):1142-. CrossRef
    17. Penkina A, Hakola M, Paaver U, Vuorinen S, Kirsim?e K, Kogermann K, / et al. Solid-state properties of softwood lignin and cellulose isolated by a new acid precipitation method. Int J Biol Macromol. 2012;51(5):939-5. CrossRef
    18. Antikainen O. New methods to evaluate applicability of powders and granules for tablet compression. PhD Theses, University of Helsinki, / Dissertationes Biocentri Viikki Universitatis Helsingiensis; 2003.
    19. Antikainen O, Yliruusi J. Determining the compression behaviour of pharmaceutical powders from the force-distance compression profile. Int J Pharm. 2003;252:253-1. CrossRef
    20. Soppela I, Airaksinen S, Hatara J, R?ikk?nen H, Antikainen O, Yliruusi J, / et al. Rapid particle size measurement using 3D surface imaging. AAPS PharmSciTech. 2011;12(2):476-4. CrossRef
    21. Sandler N. Photometric imaging in particle size measurement and surface visualization. Int J Pharm. 2011;417:227-4. CrossRef
    22. Mir VG, Hein?m?ki J, Antikainen O, Revoredo OB, Colarte AI, Nieto OM, / et al. Direct compression properties of chitin and chitosan. Eur J Pharm Biopharm. 2008;69:964-. CrossRef
    23. Patel S, Kaushal AM, Bansal AK. Effect of particle size and compression force on compaction behavior and derived mathematical parameters of compressibility. Pharm Res. 2007;24(1):111-4. CrossRef
    24. David ST, Augsburger LL. Plastic flow during compression of directly compressible fillers and its effect on tablet strength. J Pharm Sci. 1977;66:155-. CrossRef
    25. Roberts RJ, Rowe RC. The effect of the relationship between punch velocity and particle size on the compaction behaviour of materials with varying deformation mechanisms. J Pharm Pharmacol. 1986;38:567-1. CrossRef
    26. McKenna A, McCafferty DF. Effect of particle size on the compaction mechanism and tensile strength of tablets. J Pharm Pharmacol. 1982;34:347-1. CrossRef
    27. Shlieout G, Arnold K, Müller G. Powder and mechanical properties of microcrystalline cellulose with different degrees of polymerization. AAPS PharmSciTech. 2002;3(2), Article 11:1-0.
  • 作者单位:Anna Penkina (1)
    Osmo Antikainen (2)
    Maija Hakola (3)
    Sirpa Vuorinen (3)
    Timo Repo (3)
    Jouko Yliruusi (2)
    Peep Veski (1)
    Karin Kogermann (1)
    Jyrki Hein?m?ki (1)

    1. Department of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
    2. Division of Pharmaceutical Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56,, Viikinkaari 5E, 00014, Helsinki, Finland
    3. Laboratory of Inorganic Chemistry, Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55,, A. I. Virtasen aukio 1, 00014, Helsinki, Finland
文摘
Tablet compression of softwood cellulose and lignin prepared by a new catalytic oxidation and acid precipitation method were investigated and compared with the established pharmaceutical direct compression excipients. Catalytic pretreated softwood cellulose (CPSC) and lignin (CPSL) were isolated from pine wood (Pinus sylvestris). The compaction studies were carried out with an instrumented eccentric tablet machine. The plasticity and elasticity of the materials under compression were evaluated using force-displacement treatment and by determining characteristic plasticity (PF) and elasticity (EF) factors. With all biomaterials studied, the PF under compression decreased exponentially as the compression force increased. The compression force applied in tablet compression did not significantly affect the elasticity of CPSC and microcrystalline cellulose (MCC) while the EF values for softwood lignins increased as compression force increased. CPSL was clearly a less plastically deforming and less compactable material than the two celluloses (CPSC and MCC) and hardwood lignin. CPSL presented deformation and compaction behaviour almost identical to that of lactose monohydrate. In conclusion, the direct tablet compression behaviour of native lignins and celluloses can greatly differ from each other depending on the source and isolation method used.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700