用户名: 密码: 验证码:
Equilibrium and Multinuclear NMR Spectroscopic Studies of Di- and Trimethyltin(IV) Moieties with Hydroxycarboxylic Acids in Aqueous Medium
详细信息    查看全文
  • 作者:Mridula ; Mala Nath
  • 关键词:Hydroxycarboxylic acids ; Organotin ; Potentiometric ; NMR studies
  • 刊名:Journal of Solution Chemistry
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:45
  • 期:3
  • 页码:445-462
  • 全文大小:523 KB
  • 参考文献:1.Nath, M., Eng, G., Song, X., Beraldo, H., De Lima, G.M., Pettinari, C., Marchetti, F., Whalen, M.M., Beltrán, H.I., Santillan, R., Farfán, N.: Medicinal/biocidal applications of tin compounds and environmental aspects. In: Davies, A.G., Gielen, M., Pannell, K.H., Tiekink, E.R.T. (eds.) Tin Chemistry, Fundamentals, Frontiers, and Applications, 1st edn., Chap. 4. Wiley, London (2008)
    2.Appel, K.E.: Organotin compounds: toxicokinetic aspects. Drug Metab. Rev. 36, 763–786 (2004)CrossRef
    3.Pagliarani, A., Trombetti, F., Ventrella, V. (eds.): Biochemical and Biological Effects of Organotins, 1st edn. Bentham Science, Sharjah (2012)
    4.Champ, M.A.: A review of organotin regulatory strategies, pending actions, related costs and benefits. Sci. Total Environ. 258, 21–71 (2000)CrossRef
    5.Frache, R., Rivaro, P.: Occurrence, pathways and bioaccumulation of organometallic compounds in marine environments. In: Gianguzza, A., Pellizzetti, E., Sammartano, S. (eds.) Chemical Processes in Marine Environment, 1st edn., Chap. 10. Springer, Berlin (2000)
    6.Gianguzza, A., Giuffrè, O., Piazzese, D., Sammartano, S.: Aqueous solution chemistry of alkyltin(IV) compounds for speciation studies in biological fluids and natural waters. Coord. Chem. Rev. 256, 222–239 (2012)CrossRef
    7.De Stefano, C., Foti, C., Gianguzza, A., Marrone, F., Sammartano, S.: Hydrolysis of methyltin(IV) trichloride in aqueous NaCl and NaNO3 solutions at different ionic strengths and temperatures. Appl. Organomet. Chem. 13, 805–811 (1999)CrossRef
    8.De Stefano, C., Foti, C., Gianguzza, A., Martino, M., Pellerito, L., Sammartano, S.: Hydrolysis of (CH3)2Sn2+ in different ionic media: salt effects and complex formation. J. Chem. Eng. Data 41, 511–515 (1996)CrossRef
    9.Hynes, M.J., Keely, J.M., McManus, J.: Investigation of the hydrolysis of [Sn(CH3)3(H2O)2]+ in aqueous solution by Tin-119 Nuclear Magnetic Resonance spectroscopy. J. Chem. Soc. Dalton Trans 12, 3427–3429 (1991)CrossRef
    10.Cigala, R.M., De Stefano, C., Giacalone, A., Gianguzza, A., Sammartano, S.: Hydrolysis of monomethyl-, dimethyl-, and trimethyltin(IV) cations in fairly concentrated aqueous solutions at I = 1 mol·L−1 (NaNO3) and T = 298.15 K. Evidence for the predominance of polynuclear species. J. Chem. Eng. Data 56, 1108–1115 (2011)CrossRef
    11.De Stefano, C., Foti, C., Gianguzza, A., Millero, F.J., Sammartano, S.: Hydrolysis of (CH3)3Sn+ in various salt media. J. Solution Chem. 28, 959–972 (1999)CrossRef
    12.El-Sherif, A.A.: Solution coordination chemistry of organotin(IV) cations with bio-relevant ligands. J. Solution Chem. 41, 1522–1554 (2012)CrossRef
    13.Takahashi, A., Natsume, T., Koshino, N., Funahashi, S., Inada, Y., Takagi, H.D.: Speciation of trimethyltin(IV): hydrolysis, complexation equilibria, and structures of trimethyltin(IV) ion in aqueous solution. Can. J. Chem. 75, 1084–1092 (1997)CrossRef
    14.Mohamed, M.M.A., Shoukry, M.M.: Interaction of diphenyltin(IV) dichloride with some selected bioligands. Chem. Pharm. Bull. 49, 253–257 (2001)CrossRef
    15.Nath, M., Kompelli, N.: Speciation and NMR spectrometric studies of interaction of di- and triorganotin(IV) moieties with 5′-guanosine monophosphate and guanosine in aqueous solution. J. Solution Chem. 43, 1184–1204 (2014)CrossRef
    16.Nath, M., Jairath, R., Mukherjee, G.N., Das, A.: Speciation of dimethyltin(IV) and trimethyltin(IV) cations with some biologically important ligands in aqueous medium: a potentiometric investigation. Indian J. Chem. 44A, 1602–1607 (2005)
    17.Nath, M.: Sulaxna.: potentiometric and multinuclear NMR investigations of di-/trimethyltin(IV) cations with some heterocyclic thiones in aqueous media. New J. Chem. 31, 418–428 (2007)CrossRef
    18.Jankovics, H., Nagy, L., Kele, Z., Pettinari, C., D’Agati, P., Mansueto, C., Pellerito, C., Pellerito, L.: Coordination properties of the ACE inhibitor captopril towards Me2Sn(IV)2+ in aqueous solution, and biological aspects of some dialkyltin(IV) derivatives of this ligand. J. Organomet. Chem. 668, 129–139 (2003)CrossRef
    19.Pellerito, L., Nagy, L.: Organotin(IV)n+ complexes formed with biologically active ligands: equilibrium and structural studies, and some biological aspects. Coord. Chem. Rev. 224, 111–150 (2002)CrossRef
    20.Buck-Koehntop, B.A., Porcelli, F., Lewin, J.L., Cramer, C.J., Veglia, G.: Biological chemistry of organotin compounds: interactions and dealkylation by dithiols. J. Organomet. Chem. 691, 1748–1755 (2006)CrossRef
    21.Gielen, M.: Tin based anti-tumour drugs. Coord. Chem. Rev. 151, 41–51 (1996)CrossRef
    22.Siebenlist, K.R., Taketa, F.: Interactions of triethyltin bromide with components of the red cell. Toxicol. Appl. Pharmacol. 58, 67–75 (1981)CrossRef
    23.Ali, A.A., Upreti, R.K., Kidway, A.M.: Interaction of di- and tributyltin chloride with human erythrocyte membrane. Toxicol. Appl. Pharmacol. 38, 13–18 (1987)
    24.Jancsó, A., Nagy, L., Moldrheim, E., Sletten, E.: Potentiometric and spectroscopic evidence for coordination of dimethytin(IV) to phosphate groups of DNA fragments and related ligands. J. Chem. Soc. Dalton Trans. 10, 1587–1594 (1999)CrossRef
    25.Hynes, M.J., Dowd, M.O.: Interactions of the trimethyltin(IV) cation with carboxylic acids, amino acids, and related ligands. J. Chem. Soc. Dalton Trans. 3, 563–566 (1987)CrossRef
    26.Buzás, N., Gajda, T., Kuzmann, E., Nagy, L., Vértes, A., Burger, K.: Coordination properties of l -cysteine and its derivatives towards diethyltin(IV) in aqueous solution. Main Group Met. Chem. 18, 641–649 (1995)CrossRef
    27.Capolongo, F., Giuliani, A.M., Giomini, M., Russo, U.: Interactions of organotin(IV) halides with reduced glutathione in aqueous solution. J. Inorg. Biochem. 49, 275–293 (1993)CrossRef
    28.Furlán, R.L.E., Mata, E.G., Mascaretti, O.A.: Efficient, non-acidolytic method for the selective cleavage of N-Boc amino acid and peptide phenacyl esters linked to a polystyrene resin. J. Chem. Soc. Perkin Trans. 1, 355–358 (1998)CrossRef
    29.Szorcsik, A., Nagy, L., Gyurcsik, B., Vankó, G., Krämer, R., Vértes, A., Yamaguchi, T., Yoshida, K.: Organotin(IV) complexes of polyhydroxyalkyl carboxylic acids and some related ligands. J. Radioanal. Nucl. Chem. 260, 459–469 (2004)CrossRef
    30.Arena, G., Gianguzza, A., Pellerito, L., Musumeci, S., Purrello, R., Rizzarelli, E.: Co-ordination properties of dialkyltin(IV) in aqueous solution. Thermodynamics of complex formation with carboxylic acids. J. Chem. Soc. Dalton Trans. 8, 2603–2608 (1990)CrossRef
    31.Fiore, T., Foti, C., Gianguzza, A., Orecchio, S., Pellerito, L.: D-glucuronate complexes of mono-, di- and triorganotin(IV) compounds: potentiometric and Mössbauer spectroscopic investigations. Appl. Orgamomet. Chem. 16, 294–301 (2002)CrossRef
    32.AlAlousi, A.S., Shehata, M.R., Shoukry, M.M., Mohamed, N.N.: Interaction of dimethyltin(IV) and trimethyltin(IV) with dehydroacetic acid. Chem. Spec. Bioavailab. 21, 1–6 (2009)CrossRef
    33.Gajda-Schrantz, K., Nagy, L., Fiore, T., Pellerito, L., Gajda, T.: Equilibrium and spectroscopic studies of diethyltin(IV) complexes formed with hydroxymono- and di-carboxylic acids and their thioanalogues. J. Chem. Soc., Dalton Trans 2, 152–158 (2002)CrossRef
    34.Cardiano, P., Giuffrè, O., Napoli, A., Sammartano, S.: Potentiometric, 1H NMR and ESI-MS investigation on dimethyltin(IV) cation–mercaptocarboxylate interaction in aqueous solution. New J. Chem. 33, 2286–2295 (2009)CrossRef
    35.Jansco, A., Gajda, T., Szorcsik, A., Kiss, T., Henry, B., Vanko, G., Rubini, P.: Potentiometric and spectroscopic studies on the dimethyltin(IV) complexes of 2-hydroxyhippuric acid. J. Inorg. Biochem. 83, 187–192 (2001)CrossRef
    36.Fazio, S.A., Uhlinger, D.J., Parker, J.H., White, D.C.: Estimations of uronic acids as quantitative measures of extracellular and cell wall polysaccharide polymers from environmental samples. Appl. Environ. Microbial. 43, 1151–1159 (1982)
    37.Christensen, B.E., Kjosbakken, J., Smidsrod, O.: Partial chemical and physical characterization of two extracellular polysaccharides produced by marine, perphytic pseudomonas sp. strain NCMB 2021. Appl. Environ. Microbial. 50, 837–845 (1985)
    38.Guard, H.E., Coleman III, W.M., Ross, M.M.: On the characterization of the reaction of organotin compounds with D-glucuronic acid. Carbohydr. Res. 235, 41–51 (1992)CrossRef
    39.Putten, P.L.: Mandelic acid and urinary tract infections. A. Van Leeuw. 45, 622–623 (1979)CrossRef
    40.Taylor, M.B.: Summary of mandelic acid for the improvement of skin conditions. Cosmet. Dermatol. 21, 26–28 (1999)
    41.Kroes, B.H., van den Berg, A.J., Quarles van Ufford, H.C., Van Dijk, H., Labadie, R.P.: Anti-inflammatory activity of gallic acid. Planta Med 58, 499–504 (1992)CrossRef
    42.Inoue, M., Suzuki, R., Sakaguchi, N., Li, Z., Takeda, T., Ogihara, Y., Jiang, B.Y., Chen, Y.: Selective induction of cell death in cancer cells by gallic acid. Biol. Pharm. Bull. 18, 1526–1530 (1995)CrossRef
    43.Uozakia, M., Yamasaki, H., Katsuyama, Y., Higuchi, M., Higuti, T., Koyama, A.H.: Antiviral effect of octyl gallate against DNA and RNA viruses. Antiviral Res. 73, 85–91 (2007)CrossRef
    44.Kubola, J., Siriamornpun, S.: Phenolic contents and antioxidant activities of bitter gourd (Momordica charantia L.) leaf, stem and fruit fraction extracts in vitro. Food Chem. 110, 881–890 (2008)CrossRef
    45.Nath, M., Vats, M., Roy, P.: Design, spectral characterization, anti-tumor and anti-inflammatory activity of triorganotin(IV) hydroxycarboxylates, apoptosis inducers: in vitro assessment of induction of apoptosis by enzyme, DNA-fragmentation, acridine orange and comet assays. Inorg. Chim. Acta 423, 70–82 (2014)CrossRef
    46.Sizova, T.V., Yashina, N.S., Petrosyan, V.S., Yatsenko, A.V., Chernyshev, V.V., Aslanov, L.A.: X-ray structure investigation of trimethyltin α-phenyl-α-oxoacetate. J. Organomet. Chem. 453, 171–174 (1993)CrossRef
    47.Gajda-Schrantz, K., Nagy, L., Kuzmann, E., Vértes, A.: Coordination sphere symmetry of di-n-butyltin(IV) complexes containing ligands with O, O donor atoms. J. Radioanal. Nucl. Chem. 232, 151–158 (1998)CrossRef
    48.Terra, V.R., Barbiéri, R.S., CasteloBranco, P.A., Abras, A.: Synthesis and characterization of compounds diorganoestânicos acid dl-mandelic acid. Eclet. Chem. 23, 17–30 (1998)
    49.Kohn, R., Kováč, P.: Dissociation constants of d -galacturonic and d -glucuronic acid and their O-methyl derivatives. Chem. Zvesti. 32, 478–485 (1978)
    50.Cruywagen, J.J., Rohwer, E.A.: Equilibria and thermodynamic quantities for the reactions of molybdenum(VI) and tungsten(VI) with mandelate (α-hydroxybenzeneacetate). J. Chem. Soc. Dalton Trans. 21, 3433–3438 (1995)CrossRef
    51.Beltrán, J.L., Sanli, N., Fonrodona, G., Barrón, D., Özkan, G., Barbosa, J.: Spectrophotometric, potentiometric and chromatographic pKa values of polyphenolic acids in water and acetonitrile–water media. Anal. Chim. Acta 484, 253–264 (2003)CrossRef
    52.Natsume, T., Aizawa, S., Hatano, K., Funahashi, S.: Hydrolysis, polymerization and structure of dimethyltin(IV) in aqueous solution. Molecular structure of the polymer [(SnMe2)2(OH)3]ClO4. J. Chem. Soc. Dalton Trans. 19, 2749–2753 (1994)CrossRef
    53.Caldeira, M.M., Ramos, M.L., Oliveira, N.C., Gil, V.M.S.: Complexes of vanadium(V) with α-hydroxycarboxylic acids studied by 1H, 13C, and 51V nuclear magnetic resonance spectroscopy. Can. J. Chem. 65, 2434–2440 (1987)CrossRef
    54.Portanova, R., Lajunen, L.H.J., Tolazzi, M., Pisspanen, J.: Critical evaluation of stability constants for α-hydroxycarboxylic acid complexes with protons and metal ions and the accompanying enthalpy changes–Part II: aliphatic 2-hydroxycarboxylic acids. Pure Appl. Chem. 75, 495–540 (2003)CrossRef
    55.Bermejo, E., Carballo, R., Castiñeiras, A., Lago, A.B.: Coordination of α-hydroxycarboxylic acids with first-row transition ions. Coord. Chem. Rev. 257, 2639–2651 (2013)CrossRef
    56.Lockhart, T.P., Manders, W.F.: Structure determination by NMR spectroscopy. Correlation of [ 2 J(119Sn-1H)] and the Me–Sn–Me angle in methyltin(IV) compounds. Inorg. Chem. 25, 892–895 (1986)CrossRef
    57.Surdy, P., Rubini, P., Buzás, N., Henry, B., Pellerito, L., Gajda, T.: Interaction of dimethyltin(IV)2+ cation with Gly-Gly, Gly-His, and some related ligands. A new case of a metal ion able to promote peptide nitrogen deprotonation in aqueous solution. Inorg. Chem. 38, 346–352 (1999)CrossRef
    58.Holeček, J., Nádvorník, M., Handlíŕ, M., Lyčka, A.: 13C and 119Sn NMR spectra of di-n-butyltin(IV) compounds. J. Organomet. Chem. 315, 299–308 (1986)CrossRef
  • 作者单位:Mridula (1)
    Mala Nath (1)

    1. Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247 667, India
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Physical Chemistry
    Industrial Chemistry and Chemical Engineering
    Geochemistry
    Oceanography
    Inorganic Chemistry
    Condensed Matter
  • 出版者:Springer Netherlands
  • ISSN:1572-8927
文摘
The complex formation of [Me2Sn]2+/[Me3Sn]+ with glucuronic [(HL-1)], mandelic [(HL-2)] and gallic [(HL-3)] acids has been studied potentiometrically in aqueous solution (I = 1.0 mol·dm−3 KNO3, 298 ± 0.1 K) and the speciation of various complex species has been evaluated as a function of pH. The results show that these hydroxycarboxylic acid ligands (HL) coordinate via the deprotonated oxygen atom of the carboxylate group resulting in the formation of mixed hydroxo species [Me2Sn(L)(OH)] (12.6–46.2 % in 1:1, 18.3–64.0 % in 1:2) along with [Me2Sn(L)]+ (9.2–18.0 % in 1:1, 14.8–27.8 % in 1:2) in Me2Sn(IV)–(HL) systems and single 1:1 species [Me3Sn(L)] (7.1–12.2 % in 1:1, 13.2–21.7 % in 1:2) in Me3Sn(IV)–(HL) systems at acidic pHs. At physiological pH ~7.0, the major species is [Me2Sn(OH)2] (96.0–97.5 % in 1:1, 92.4–97.2 % in 1:2) with minor amount of [Me2Sn(L)(OH)] (0.4–2.5 % in 1:1, 1.0–5.8 % in 1:2) in Me2Sn(IV)–(HL) systems. Similarly, in Me3Sn(IV)–(HL) systems the major species formed is [Me3Sn(OH)] (86.6–91.5 % in 1:1, 84.7–89.3 % in 1:2) with a very small amount of [Me3Sn(L)] (1.0–1.4 % in 1:1, 1.7–3.0 % in 1:2). At pH >8.0, only hydroxo species are formed, viz. [Me2Sn(OH)2], [Me2Sn(OH)3]− and [Me3Sn(OH)]. In all of the systems, no polymeric species were observed in the studied pH range. Multinuclear (1H, 13C and 119Sn) NMR studies, carried out at different pHs, confirmed the species formation and led us to propose their possible geometries in aqueous solution.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700