用户名: 密码: 验证码:
Different interaction among Glomus and Rhizobium species on Phaseolus vulgaris and Zea mays plant growth, physiology and symbiotic develop
详细信息    查看全文
  • 作者:Vinicius Ide Franzini (1) (2)
    Rosario Azcón (1)
    Fernanda Latanze Méndes (1)
    Ricardo Aroca (1)
  • 关键词:Drought ; Glomus sp. ; Rhizobium sp. ; Phaseolus vulgaris ; Symbiosis ; Zea mays
  • 刊名:Plant Growth Regulation
  • 出版年:2013
  • 出版时间:July 2013
  • 年:2013
  • 卷:70
  • 期:3
  • 页码:265-273
  • 全文大小:530KB
  • 参考文献:1. Antoun H, Beauchamp CJ, Goussard N, Chabot R, Lalande R (1998) Potential of / Rhizobium and / Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: effect on radishes ( / Raphanus sativus L.). Plant Soil 204:57-7 CrossRef
    2. Aroca R, Ruíz-Lozano JM (2009) Induction of plant tolerance to semi-arid environments by beneficial soil microorganisms. In: Lichtfouse E (ed) Climate change, intercropping, pest control and beneficial microorganisms, sustainable agriculture reviews 2. Springer, Dordrecht, pp 121-35. doi: 10.1007/978-90-481-2716-0_7
    3. Aroca R, Irigoyen JJ, Sánchez-Díaz M (2003) Drought enhances maize chilling tolerance. II. Photosynthetic traits and protective mechanisms against oxidative stress. Physiol Plant 117:540-49 CrossRef
    4. Aryal UK, Xu HL, Fujita M (2003) Rhizobia and AM fungal inoculation improve growth and nutrient uptake of bean plants under organic fertilization. J Sust Agric 21:29-1 CrossRef
    5. Azcón R, Barea JM (2010) Mycorrhizosphere interactions for legume improvement. In: Khan MS, Zaidi A, Musarrat J (eds) Microbes for legume improvement. Springer, Vienna, pp 237-71 CrossRef
    6. Azcón R, Rubio R, Barea JM (1991) Selective interactions between different species of mycorrhizal fungi and / Rhizobium meliloti strains, and their effects on growth, N2 fixation (N15) in / Medicago sativa at four salinity level. New Phytol 117:399-04 CrossRef
    7. Barea JM, Azcón R, Azcón-Aguilar C (1992) The use of N15 to assess the role of VA mycorrhiza on plant N nutrition and its application to evaluate the role of mycorrhiza in restoring Mediterranean ecosystems. In: Read DJ, Lewis DH, Fitter AH, Alexander IJ (eds) Mycorrhizas in ecosystems. Structure and function. CAB International, Wallingford, pp 190-97
    8. Barea JM, Azcón R, Azcón-Aguilar C (2004) Mycorrhizal fungi and plant growth promoting rhizobacteria. In: Varma A, Abbott LK, Werner D, Hampp R (eds) Plant surface microbiology. Springer, Heidelberg, pp 351-71
    9. Bowen GD, Rovira AD (1999) The rhizosphere and its management to improve plant growth. Adv Agron 66:1-02 CrossRef
    10. Campos-Soriano L, García-Martínez J, San Segundo B (2012) The arbuscular mycorrhizal symbiosis promotes the systemic induction of regulatory defence-related genes in rice leaves and confers resistance to pathogen infection. Mol Plant Pathol 13:579-92 CrossRef
    11. Cappellazzo G, Lanfranco L, Fitz M, Wipf D, Bonfante P (2008) Characterization of an amino acid permease from the endomycorrhizal fungus / Glomus mosseae. Plant Physiol 147:429-37. doi:10.1104/pp.108.117820 CrossRef
    12. Catford JG, Staehelin C, Lerat S, Piche Y, Vierheilig H (2003) Suppression of arbuscular mycorrhizal colonization and nodulation in split-root systems of alfalfa after pre-inoculation and treatment with Nod factors. J Exp Bot 54:1481-487. doi:10.1093/jxb/erg156 CrossRef
    13. Davies WJ, Wilkinson S (2012) Understanding and exploiting plant hormone biology to enhance crop production under water scarcity. In: Aroca R (ed) Plant responses to drought stress. From morphological to molecular features. Springer, Berlin, pp 259-72 CrossRef
    14. Denison RF, Bledsoe C, Kahn M, O’Gara F, Simms EL, Thomashow LS (2003) Cooperation in the rhizosphere and the “free rider-problem. Ecology 84:838-45. doi:10.1890/06-1564.1 CrossRef
    15. Fageria NK, Santos AB (2008) Yield physiology of dry bean. J Plant Nutr 31:983-004. doi:10.1080/01904160802096815 CrossRef
    16. Flexas J, Bota J, Loreto F, Cornic G, Sharkey TD (2004) Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol 6:269-79 CrossRef
    17. Franzini VI, Azcón R, Latanze-Mendes F, Aroca R (2010) Interaction between / Glomus species and / Rhizobium strains affect the nutritional physiology of drought stressed legume hosts. J Plant Physiol 167:614-19 CrossRef
    18. Galleguillos C, Aguirre C, Barea JM, Azcón R (2000) Growth promoting effect of two / Sinorhizobium meliloti strains (a wild type and its genetically modified derivative) on a non-legume plant species in specific interaction with two arbuscular mycorrhizal fungi. Plant Sci 159:57-3 CrossRef
    19. García-Tejero I, Duran-Zuazo VH, Arriaga-Sevilla J, Muriel-Fernández JL (2012) Impact of water stress on citrus yield. Agron Sustain Dev 32:651-59 CrossRef
    20. George E, Haussler KU, Vetterlein D, Gorgus E, Marschner H (1992) Water and nutrient translocation by hyphae of / Glomus mosseae. Can J Bot 70:2130-137 CrossRef
    21. Giovannetti M, Mosse B (1980) Evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489-00 CrossRef
    22. Ha Y, Gray VM (2008) Growth yield of / Vicia faba L in response to microbial symbiotic associations. S Afr J Bot 74:25-2. doi:10.1016/j.sajb.2007.08.003 CrossRef
    23. Ibijbijen J, Urquiaga S, Ismaili M, Alves BJR, Boddey RM (1996) Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition and nitrogen fixation of three varieties of common beans ( / Phaseolus vulgaris). New Phytol 134:353-60. doi:10.1111/j.1469-8137.1996.tb04640.x CrossRef
    24. Kaschuk G, Kuyper TW, Leffelaar PA, Hungria M, Giller KE (2009) Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? Soil Biol Biochem 41:1233-244. doi:10.1016/j.soilbio.2009.03.005 CrossRef
    25. León-Morcillo RJ, Martín-Rodríguez JA, Vierheilig H, Ocampo JA, Garcia-Garrido JM (2012) Late activation of the 9-oxylipin pathway during arbuscular mycorrhiza formation in tomato and its regulation by jasmonate signalling. J Exp Bot 63:3545-558 CrossRef
    26. Marulanda A, Azcón R, Ruíz-Lozano JM (2003) Contribution of six arbuscular mycorrhizal fungal isolates to water uptake by / Lactuca sativa plants under drought stress. Physiol Plant 119:526-33 CrossRef
    27. Marulanda A, Azcón R, Chaumont F, Ruiz-Lozano JM, Aroca R (2010) Regulation of plasma membrane aquaporins by inoculation with a / Bacillus megaterium strain in maize ( / Zea mays L.) plants under unstressed and salt-stressed conditions. Planta 232:533-43 CrossRef
    28. Monzón A, Azcón R (1996) Relevance of mycorrhizal fungal origin and host plant genotype to inducing growth and nutrient uptake in / Medicago species. Agric Ecosyst Environ 60:9-5 CrossRef
    29. Mortimer PE, Pérez-Fernández MA, Valentine AJ (2008) The role of arbuscular mycorrhizal colonization in the carbon and nutrient economy of the tripartite symbiosis with nodulated / Phaseolus vulgaris. Soil Biol Biochem 40:1019-027. doi:10.1016/j.soilbio.2007.11.014 CrossRef
    30. Niranjan R, Mohan V, Rao VM (2007) Effect of indole acetic acid on the synergistic interactions of / Bradyrhizobium and / Glomus fasciculatum on growth, nodulation, and nitrogen fixation of / Dalbergia sissoo roxb. Arid Land Res Manag 21:329-42. doi:10.1080/15324980701603573 CrossRef
    31. Phillips JM, Hayman DS (1970) Improved procedure of clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Brit Mycol Soc 55:159-61 CrossRef
    32. Porcel R, Aroca R, Azcón R, Ruíz-Lozano JM (2006) PIP aquaporin gene expression in arbuscular mycorrhizal / Glycine max and / Lactuca sativa plants in relation to drought stress tolerance. Plant Mol Biol 60:389-04. doi:10.1007/s11103-005-4210-y CrossRef
    33. Rincon A, Valladares F, Gimeno TE, Pueyo JJ (2008) Water stress responses of two Mediterranean tree species influenced by native soil microorganisms and inoculation with a plant growth promoting rhizobacterium. Tree Physiol 28:1693-701 CrossRef
    34. Rodino AP, Metral R, Guglielmi S, Drevon JJ (2009) Variation among common-bean accessions ( / Phaseolus vulgaris L.) from the Iberian Peninsula for N-2-dependent growth and phosphorus requirement. Symbiosis 47:161-74 CrossRef
    35. Rouphael Y, Cardarelli M, Schwarz D, Franken P, Colla G (2012) Effects of drought on nutrient uptake and assimilation in vegetable crops. In: Aroca R (ed) Plant responses to drought stress. From morphological to molecular features. Springer, Berlin, pp 171-95 CrossRef
    36. Ruíz-Lozano JM, Azcón R (1993) Specificity and functional compatibility of VA mycorrhizal endophytes in association with / Bradyrhizobium strains in / Cicer arietinum. Symbiosis 15:217-26
    37. Ruíz-Lozano JM, Azcón R (1994) Development and activity of the symbiosis between / Bradyrhizobium strains, / Glomus species and / Cicer arietinum: effect of timing of inoculation and photon irradiance. Symbiosis 16:249-65
    38. Ruíz-Lozano JM, Azcón R (1996) Mycorrhizal colonization and drought stress as factors affecting nitrate reductase activity in lettuce plants. Agric Ecosyst Environ 60:175-81 CrossRef
    39. Ryu HJ, Cho HW, Choi DS, Hwang I (2012) Plant hormonal regulation of nitrogen-fixing nodule organogenesis. Mol Cells 34:117-26 CrossRef
    40. Siame J, Willey RW, Morse S (1998) The response of maize/phaseolus intercropping to applied nitrogen on oxisols in northern Zambia. Field Crop Res 55:73-1 CrossRef
    41. Sileshi GW, Akinnifesi FK, Ajayi OC, Muys B (2011) Integration of legume trees in maize-based cropping systems improves rain use efficiency and yield stability under rain-fed agriculture. Agric Water Manage 98:1364-372 CrossRef
    42. Tajini F, Trabelsi M, Drevon JJ (2011) Co-inoculation with / Glomus intraradices and / Rhizobium tropici CIAT899 increase P use efficiency for N2 fixation in the common bean ( / Phaseolus vulgaris L.) under P deficiency in hydroaeroponic culture. Symbiosis 53:123-29 CrossRef
    43. Tajini F, Trabelsi M, Drevon JJ (2012) Arbuscular mycorrhizas by contact with mycorrhized / Stylosanthes guianensis enhance P use efficiency for N2 fixation in the common bean ( / Phaseolus vulgaris L.). Afr J Microbiol Res 6:1297-305
    44. Thiagarajan TR, Ames RN, Ahmad MH (1992) Response of cowpea ( / Vigna unguiculata) to inoculation with co-selected vesicular-arbuscular mycorrhizal fungi and / Rhizobium strains in field trials. Can J Microbiol 38:573-76 CrossRef
    45. Vejsadová H, Siblíková D, Hrselová H, Vancura V (1992) Effect of the VAM fungus / Glomus sp. on the growth and yield of soybean inoculated with / Bradyrhizobium japonicum. Plant Soil 140:121-25. doi:10.1007/bf00012813 CrossRef
    46. Weston DJ, Pelletier DA, Morrell-Falvey JL, Tschaplinski TJ, Jawdy SS, Lu TY, Allen SM, Melton SJ, Martin MZ, Schadt CW, Karve AA, Chen JG, Yang XH, Doktycz MJ, Tuskan GA (2012) / Pseudomonas fluorescens induces strain-dependent and strain-independent host plant responses in defense networks, primary metabolism, photosynthesis, and fitness. Mol Plant Microbe Interact 25:765-78. doi:10.1094/mpmi-09-11-0253 CrossRef
    47. Xin DW, Liao S, Xie ZP, Hann DR, Steinle L, Boller T, Staehelin C (2012) Functional analysis of NopM, a novel E3 ubiquitin ligase (NEL) domain effector of / Rhizobium sp starin NGR234. PLoS Pathog 8:e1002707 CrossRef
  • 作者单位:Vinicius Ide Franzini (1) (2)
    Rosario Azcón (1)
    Fernanda Latanze Méndes (1)
    Ricardo Aroca (1)

    1. Departamento de Microbiología del Suelo y Sistemas Simbióticos; Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain
    2. Embrapa Amaz?nia Oriental, Travessa Dr. Enéas Pinheiro, s/n, Marco, Caixa Postal 48, Belém, PA, 66095-100, Brazil
  • ISSN:1573-5087
文摘
Even though the positive interactions between arbuscular mycorrhizal (AM) fungi and rhizobial bacteria in legume plants are well documented, their interactions under drought conditions could be negative in some species. In the present study, we examined six different strains of Rhizobiun in combination with two AM fungi (Glomus mosseae and Glomus intraradices) on the responses of Phaseolus vulgaris plants to moderate drought conditions. Moreover, to discriminate between direct competition for carbon resources from direct inhibition processes, a non-legume plant (Zea mays) was also used. Although all inoculants (single or double) increased P. vulgaris growth, only one double combination further increased total or pod dry weights. On the other hand, three double combinations decreased pod dry weight compared to plants inoculated with a single AM fungus. In Z. mays plants, one double inoculation treatment further increased shoot dry weight, but another double inoculation treatment decreased root dry weight in plants inoculated with G. mosseae. In addition, in both plant species, a higher percentage of decrease in AM root colonization by some rhizobial strains was observed. This was most likely caused by a direct inhibition of AM fungal growth by the rhizobial strains and also depended on the host plant involved. Further research is needed to elucidate on the mechanisms behind this inhibition.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700