用户名: 密码: 验证码:
Nonlocal viscoelasticity based vibration of double viscoelastic piezoelectric nanobeam systems
详细信息    查看全文
  • 作者:A. H. Ghorbanpour-Arani ; A. Rastgoo ; M. M. Sharafi ; R. Kolahchi…
  • 关键词:Viscoelastic piezoelectric nanobeam ; Vibration ; Kelvin–Voigt model ; Maxwell model ; Viscoelastic medium
  • 刊名:Meccanica
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:51
  • 期:1
  • 页码:25-40
  • 全文大小:1,285 KB
  • 参考文献:1.Jalili N (2010) Piezoelectric-based vibration control from macro to micro/nano scale systems. Springer Science, New YorkCrossRef
    2.Ke LL, Wang YS, Wang ZhD (2012) Nonlinear vibration of the piezoelectric nanobeam based on nonlocal theory. Compos Struct 6:2038–2047CrossRef
    3.Tanner SM, Gray JM, Rogers CT, Bertness KA, Sanford NA (2007) High-Q GaN nanowire resonators and oscillators. Appl Phys Lett 91:203117ADS CrossRef
    4.Fei P, Yeh PH, Zhou J, Xu S, Gao YF, Song JH (2009) Piezoelectric potential gated field-effect transistor based on a free-standing ZnO wire. Nano Lett 9:3435–3439ADS CrossRef
    5.He JH, Hsin CL, Liu J, Chen LJ, Wang ZL (2007) Piezoelectric gated diode of a single ZnO nanowire. Adv Mater 19:781–784CrossRef
    6.Wang Q, Li QH, Chen YJ, Wang TH, He XL, Li JP (2004) Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl Phys Lett 84:3654–3656ADS CrossRef
    7.Wang ZL, Song JH (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312:242–246ADS CrossRef
    8.Eringen AC (2002) Nonlocal continuum field theories. Springer, New YorkMATH
    9.lu P, Lee HP, Lu C, Zhang PQ (2006) Dynamic properties of flexural beams using a nonlocal elasticity model. J Appl Phys 99:073510ADS CrossRef
    10.Lim CW, Li CH, Yu JL (2010) Free vibration of pretensioned nanobeams based on nonlocal stress theory. J Zhejiang Univ Sci A 11:34–42MATH CrossRef
    11. Haghpanahi M, Oveisi A, Gudarzi M (2013) Vibration analysis of piezoelectric nanowires using the finite element method. Int J Basic Appl Sci 4:205–212
    12.Aydogdu M (2009) A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration. Phys E 41:1651–1655CrossRef
    13.Yang J, Ke LL, Kitipornchai S (2010) Nonlinear free vibration of single-walled carbone-nanotubes using nonlocal Timoshenko beam theory. Phys E 42:1727–1735CrossRef
    14.Phadikar JK, Pradhan SC (2010) Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates. Comput Mater Sci 49:492–499CrossRef
    15.Vu HV, Ordóňez AM, Karnopp BH (2000) Vibration of a double beam system. J Sound Vib 229:807–822ADS MATH CrossRef
    16.Gürgöze M, Erol H (2003) On lateraly vibrating beams carrying tip masses, coupled by several double spring-mass system. J Sound Vib 269:431–438CrossRef
    17.Murmu T, Adhikari S (2010) Nonlocal effects in the longitudinal vibration of doubled nanorod systems. Phys E 43:415–422CrossRef
    18.Murmu T, Adhikari S (2010) Nonlocal transverse vibration of double nanobeam system. J Appl Phys 108:083514ADS CrossRef
    19.Murmu T, Adhikari S (2012) Nonlocal elasticity based vibration of initially pre-stressed couple nanobeam systems. Eur J Mech A/Solids 34:52–62MathSciNet CrossRef
    20.Salehi-Khojin A, Jalili N (2008) Buckling of boron nitride nanotube reinforced piezoelectric polymeric composites subject to combined electro-thermo-mechanical loadings. Compos Sci Tech 68:1489–1501CrossRef
    21.Ghorbanpour Arani A, Amir S, Shajari AR, Mozdianfard MR, Khoddami Maraghi Z, Mohammadimehr M (2011) Electro-thermal non-local vibration analysis of embedded DWBNNTs. Proc Inst Mech Eng Part C 224:745–756CrossRef
    22.Ghorbanpour Arani A, Amir S, Shajari AR, Mozdianfard MR (2012) Electro-thermo-mechanical buckling of DWBNNTs embedded in bundle of CNTs using nonlocal piezoelasticity cylindrical shell theory. Compos Part B Eng 43:195–203CrossRef
    23.Khodami Maraghi Z, Ghorbanpour Arani A, Kolahchi R, Amir S, Bagheri MR (2013) Nonlocal vibration and instability of embedded DWBNNT conveying viscose fluid. Compos Part B Eng 45:423–432CrossRef
    24.Ghorbanpour Arani A, Kolahchi R, Khoddami Maraghi Z (2013) Nonlinear vibration and instability of embedded double-walled boron nitride nanotubes based on nonlocal cylindrical shell theory. Appl Math Model 37:7685–7707MathSciNet CrossRef
    25.Nima Mahmoodi S, Jalili N, Khadem SE (2008) An experimental investigation of nonlinear vibration and frequency response analysis of cantilever viscoelastic beams. J Sound Vib 311:1409–1419ADS CrossRef
    26.Fu YM, Zhang J (2009) Nonlinear static and dynamic responses of an electrically actuated viscoelastic microbeam. Acta Mech Sin 25:211–218ADS MATH CrossRef
    27.Ghavanloo E, Fazelzadeh SA (2011) Flow-thermoelastic vibration and instability analysis of viscoelastic carbon nanotubes embedded in viscous fluid. Phys E 44:17–24CrossRef
    28.Pouresmaeeli S, Ghavanloo E, Fazelzadeh SA (2013) Vibration analysis of viscoelastic orthotropic nanoplate resting on viscoelastic medium. Compos Struct 96:405–410CrossRef
    29.Ghorbanpour Arani A, Kolahchi R, Mosallaie Barzoki AA (2011) Effect of material in-homogeneity on electro-thermo-mechanical behaviors of functionally graded piezoelectric rotating shaft. Appl Math Model 35:2771–2789MATH MathSciNet CrossRef
    30.Ghorbanpour Arani A, Kolahchi R, Vossough H (2012) Buckling analysis and smart control of SLGS using elastically coupled PVDF nanoplate based on the nonlocal Mindlin plate theory. Phys B 407:4458–4465ADS CrossRef
    31.Riande E (2000) Polymer viscoelasticity-stress and strain in practice. Marcel Dekker, New York
    32.Bakhtiari-Nejad F, Meidan-Sharafi M (2004) Vibration optimal control of a smart plate with input voltage constraint of piezoelectric actuators. J Vib Control 10:1749–1774MATH CrossRef
    33.Mainardi F (2010) Fractional calculus and waves in linear viscoelasticity. Imperial College Press, LondonMATH CrossRef
    34.Wang Q (2005) Wave propagation in carbon nanotubes via nonlocal continuum mechanics. J Appl Phys 98:124301ADS CrossRef
  • 作者单位:A. H. Ghorbanpour-Arani (1)
    A. Rastgoo (1)
    M. M. Sharafi (2)
    R. Kolahchi (2)
    A. Ghorbanpour Arani (2) (3)

    1. School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
    2. Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran
    3. Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Iran
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Mechanics
    Civil Engineering
    Automotive and Aerospace Engineering and Traffic
    Mechanical Engineering
  • 出版者:Springer Netherlands
  • ISSN:1572-9648
文摘
The present work deals with the analysis of free and forced vibrations of double viscoelastic piezoelectric nanobeam systems (DVPNBSs) incorporating nonlocal viscoelasticity theory and Euler–Bernoulli beam model. The two viscoelastic piezoelectric nanobeams (VPNBs) are coupled by visco-Pasternak medium. Viscoelastic property of VPNBs is simulated by Kelvin–Voigt and Maxwell models. In order to obtain the natural frequency and frequency response of the coupled system under the harmonic excitation, an exact solution is presented. The free and forced vibrations of DVPNBS are considered in three cases namely out-of-phase vibration, in-phase vibration and vibration with one VPNB fixed. A detailed parametric study is carried out to demonstrate the influence of nonlocal parameter, visco-Pasternak constants, voltage, Kelvin–Voigt and Maxwell coefficients on the vibration characteristic of DVPNBS. Results indicate that the natural frequencies of DVPNBS are significantly influenced by nonlocal effects. In addition, effects of damping coefficient of the viscoelastic medium and internal damping of the material on the frequency of the coupled system are vice versa. Furthermore, the imposed external voltage is an effective controlling parameter for vibration of the coupled system. Keywords Viscoelastic piezoelectric nanobeam Vibration Kelvin–Voigt model Maxwell model Viscoelastic medium

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700