用户名: 密码: 验证码:
Linear Neural Circuitry Model for Visual Receptive Fields
详细信息    查看全文
  • 作者:Sasan Mahmoodi
  • 关键词:Gaussian filtering ; Neural layers ; Visual receptive fields ; Linear cells ; Nonlinear neural networks
  • 刊名:Journal of Mathematical Imaging and Vision
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:54
  • 期:2
  • 页码:138-161
  • 全文大小:3,700 KB
  • 参考文献:1.Adelson, E., Bergen, J.: Spaio-temporal energy models for the perception of motion. J. Opt. Soc. Am. A 2, 284–299 (1985)CrossRef
    2.Baer, S.M., Rinzel, J.: Propagation of dendritic spikes mediated by excitable spines: a continuum theory. J. Neurophysiol. 65(4), 874–890 (1991)
    3.Caceci, T.: Anatomy and Physiology of the Eye. (http://​www.​vetmed.​vt.​edu/​education/​Curriculum/​VM8054/​EYE/​EYEDEMO.​HTM ), Virginia/Marylan Regional College of Veterinary Medicine (1998)
    4.Carandini, M., Ferster, D.: Membrane potential and firing rate in cat primary visual cortex. J. Neurosci. 20(1), 470–484 (2000)
    5.Carandini, M., Heeger, D.J.: Normalization as a canonical neural computation. Nat. Rev. Neurosci. 13, 51–62 (2012)CrossRef
    6.Conway, B.R., Livingstone, M.S.: Spatial and temporal properties of cone signals in alert macaque primary visual cortex. J. Neurosci. 25(42), 10826–10846 (2006)CrossRef
    7.DeAngelis, G.C., Anzai, A.: A modern view of the classical receptive field: linear and non-linear spatio-temporal processing by V1 neurons. In: Chalupa, L.M., Werner, J.S. (eds.) The Visual Neurosciences, vol. 1, pp. 704–719. MIT Press, Cambridge (2004)
    8.DeAngelis, D.C., Ohzawa, I., Freeman, R.D.: Receptive-field dynamics in the central visual pathways. Trends Neurosci. 18, 451–457 (1995)CrossRef
    9.Dinse, H.R.O., von Seelen, W.: On the function of cell systems in area 18, parts I and II. Biol. Cybern. 41, 47–69 (1981)CrossRef
    10.Duits, R., Florack, L., de Graaf, J., ter Haar Romeny, B.: On the axioms of scale space theory. J. Math. Imaging Vis. 22, 267–298 (2004)CrossRef
    11.Enroth-Cugell, C., Robson, J.G.: The contrast sensitivity of retinal ganglion cells of the cat. J. Physiol. 187, 517–552 (1966)CrossRef
    12.Felsberg, M., Sommer, G.: Scale adaptive filtering derived from the Laplace equation. In: Radig B., Florczyk S. Pattern Recognition. Lecture Notes in Computer Science, vol. 2032, pp. 95–106. Springer, Berlin (2001)
    13.Florack, L., ter Haar, Romney B., Koenderink, J., Viergever, M.: Scale and the differential structure of images. Image Vis. Comput. 10(6), 376–388 (1992)CrossRef
    14.Florack, L.: Image Structure. Series in Mathematical Imaging and Vision. Springer, Dordrecht (1997)CrossRef
    15.Granit, R., Kernell, D., Shortess, G.K.: Quantitative aspects of repetitive firing of mammalian motoneurons caused by injected currents. J. Physiol. (Lond.) 168, 911–931 (1963)CrossRef
    16.Hartline, H.K.: The response of single optic nerve fibres of the vertebrate eye to illumination of the retina. Am. J. Physiol. 121, 400–415 (1938)
    17.Hubel, D.H., Wiesel, T.N.: Brain and Visual Perception: The Story of a 25-Year Collaboration. Oxford University Press, Oxford (2005)
    18.Koenderink, J.J.: Scale-time. Biol. Cybern. 58, 159–162 (1988)CrossRef MathSciNet MATH
    19.Krone, G., Mallot, H.A., Palm, G., Schutz, A.: Spatio-temporal receptive fields: a dynamical model derived from cortical architectonics. Proc. R Soc. Lond. Ser. B 226, 421–444 (1986)CrossRef
    20.Kuffler, S.W.: Discharge patterns and functional organization of mammalian retina. J. Neurophysiol. 16(1), 37–68 (1953)
    21.Lindeberg, T., Fagerstrom, D.: Scale-space with causal time direction. In: Proceedings of 4th European Conference on Computer Vision, vol. 1064, pp. 229–240. Springer, Berlin (1996)
    22.Lindeberg, T.: Generalized Gaussian scale-space axiomatic comprising linear scale-space, affine scale-space and spatio-temporal scale-space. J. Math. Imaging Vis. 40, 36–81 (2011)CrossRef MathSciNet MATH
    23.Lindeberg, T.: A computational theory of visual receptive fields. Biol. Cybern. 107, 589–635 (2013)CrossRef MathSciNet MATH
    24.Lindeberg, T.: Separable time-causal and time-recursive spatio-temporal receptive fields. In Scale Space and Variational Methods in Computer Vision. Lecture Notes in Computer Science, vol. 9087, pp. 90–102. Springer, Berlin (2015)
    25.Mahmoodi, S.: Edge detection based on Mumford-Shah green function. SIAM J. Imaging Sci. 5(1), 343–365 (2012)CrossRef MathSciNet MATH
    26.Miller, J.P., Rall, W., Rinzel, J.: Synaptic amplification by active membrane in dendritic spines. Brain Res. 325, 325–330 (1985)
    27.Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42, 577–688 (1989)CrossRef MathSciNet MATH
    28.Nielsen, M., Florack, L., Deriche, R.: Regularization, scale-space and edge detection filters. J. Math. Imaging Vis. 7, 291–307 (1997)CrossRef MathSciNet
    29.Papoulis, A.: The Fourier Integral and its Applications. McGraw-Hill Book Company, Inc, New York (1962)MATH
    30.Penrose, R.: The Road to Reality: A Complete Guide to the Laws of Universe. Jonathan Cape, London (2004)
    31.Segev, I., Rall, W.: Computational study of an excitable dendritic spine. J. Neurophysiol. 60(2), 499–523 (1988)
    32.Sherrington, C.S.: The Integrative Action of the Nervous System. C Scribner and Sons, New York (1906)
    33.Skilling, H.H.: Electric Transmission Lines: Distributed Constants, Theory and Applications. McGraw-Hill Book Company Inc, New York (1979)
    34.ter Haar Romeny, B.: Front-End Vision and Multi-Scale Image Analysis. Springer, Dordrecht (2003)CrossRef
    35.ter Haar Romeny, B., Florack, L., Nielsen, M.: Scale-time Kernels and Models. In: Scale-Space and Morphology. Proceedings of Scale-Space’01. Lecture Notes in Computer Science. Springer, Berlin (2001)
    36.von Seelen, W., Mallot, H.A., Giannakopoulos, F.: Characteristics of neural systems in the visual cortex. Biol. Cybern. 56, 37–49 (1987)CrossRef MATH
    37.Weickert, J., Ishikawa, S., Imiya, A.: On the history Gaussian scale-space aximatics, chapter 4, pp. 45–59. In: Sporring, J., Nielsen, M., Florack, L.M.J., Johansen P. (Eds.), Gaussian Scale Space Theory, Vol. 8. Computational Imaging and Vision Series. Kulwer, Dordrecht (1997)
    38.Weickert, J., Ishikawa, S., Imiya, A.: Linear scale space has first been proposed in Japan. J. Math. Imaging Vis. 10, 237–252 (1999)CrossRef MathSciNet MATH
    39.Young, R.A.: The Gaussian derivative model for spatial vision: I. Retinal mechanisms. Spatial Vis. 2(4), 273–293 (1987)CrossRef
    40.Young, R.A., Lesperance, R.M., Meyer, W.W.: The Gaussian derivative model for spatial-temporal vision: I. Cortical model. Spatial Vis. 14(3,4), 261–319 (2001)CrossRef
  • 作者单位:Sasan Mahmoodi (1)

    1. School of Electronic and Computer Science, University of Southampton, Southampton, UK
  • 刊物类别:Computer Science
  • 刊物主题:Computer Imaging, Vision, Pattern Recognition and Graphics
    Image Processing and Computer Vision
    Artificial Intelligence and Robotics
    Automation and Robotics
  • 出版者:Springer Netherlands
  • ISSN:1573-7683
文摘
The current state of art in the literature indicates that linear visual receptive fields are Gaussian or formed based on Gaussian kernels in biological visual systems. In this paper, by employing hypotheses based on the anatomy and physiology of vertebrate biological vision, we propose a neural circuitry possessing Gaussian-related visual receptive fields. Here, we present a plausible circuitry system matching the characteristic properties of an ideal visual front end of biological visual systems and then present a condition under which this circuit demonstrates a linear behaviour to model the linear receptive fields observed in the biological experimental data. The objective of this study is to understand the hardware circuitry from which various visual receptive fields in biological visual system can be deduced. In our model, a nonlinear neural network communicating with spikes is considered. The condition under which this neural network behaves linearly is discussed. The equivalent linear circuit proposed here employs some anatomical and physiological properties of the early biological visual pathway to derive the visual receptive field profiles for linear cells such as neurons with isotropic separable, non-isotropic separable and non-separable (velocity-adapted) Gaussian receptive fields in the LGN and striate cortex. In the model presented here, the theory of transmission lines for linear distributed electrical circuits is employed for two-dimensional transmission grids to model cell connectivities in a neural layer. The model presented here leads to a formulation similar to the Gaussian scale-space theory for the transmission of visual signals through various layers of neurons. Our model therefore presents a new insight on how the convolution process with Gaussian kernels can be implemented in vertebrate visual systems. The comparison of the numerical simulations of our model presented in this paper with the data analysis of receptive field profiles recorded in the biological literature demonstrates a complete agreement between our theoretical model and experimental data. Our model is also in good agreement with the numerical results of the Gaussian scale-space theory for the visual receptive fields. Keywords Gaussian filtering Neural layers Visual receptive fields Linear cells Nonlinear neural networks

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700