用户名: 密码: 验证码:
The emerging role of Acid Sphingomyelinase in autophagy
详细信息    查看全文
  • 作者:Cristiana Perrotta (1)
    Davide Cervia (1) (2)
    Clara De Palma (1)
    Emma Assi (3)
    Paolo Pellegrino (1)
    Maria Teresa Bassi (3)
    Emilio Clementi (1) (3)

    1. Unit of Clinical Pharmacology
    ; Department of Biomedical and Clinical Sciences 鈥淟uigi Sacco鈥?(DIBIC) ; National Research Council-Institute of Neuroscience ; University Hospital 鈥淟uigi Sacco鈥? Universit脿 di Milano ; 20157 ; Milan ; Italy
    2. Department for Innovation in Biological
    ; Agro-food and Forest Systems (DIBAF) ; Universit脿 della Tuscia ; 01100 ; Viterbo ; Italy
    3. Scientific Institute IRCCS Eugenio Medea
    ; 23842 ; Bosisio Parini ; Italy
  • 关键词:Acid Sphingomyelinase ; Autophagy ; Autophagic signalling ; Lysosomes ; Autophagy ; related diseases
  • 刊名:Apoptosis
  • 出版年:2015
  • 出版时间:May 2015
  • 年:2015
  • 卷:20
  • 期:5
  • 页码:635-644
  • 全文大小:243 KB
  • 参考文献:1. Perrotta, C, Clementi, E (2010) Biological roles of Acid and neutral sphingomyelinases and their regulation by nitric oxide. Physiology (Bethesda) 25: pp. 64-71
    2. Marchesini, N, Osta, W, Bielawski, J, Luberto, C, Obeid, LM, Hannun, YA (2004) Role for mammalian neutral sphingomyelinase 2 in confluence-induced growth arrest of MCF7 cells. J Biol Chem 279: pp. 25101-25111
    3. Bartke, N, Hannun, YA (2009) Bioactive sphingolipids: metabolism and function. J Lipid Res 50: pp. S91-S96
    4. Hannun, YA, Obeid, LM (2002) The Ceramide-centric universe of lipid-mediated cell regulation: stress encounters of the lipid kind. J Biol Chem 277: pp. 25847-25850
    5. Hannun, YA, Obeid, LM (2011) Many ceramides. J Biol Chem 286: pp. 27855-27862
    6. Gatt, S (1963) Enzymic hydrolysis and synthesis of ceramides. J Biol Chem 238: pp. 3131-3133
    7. Horinouchi, K, Erlich, S, Perl, DP, Ferlinz, K, Bisgaier, CL, Sandhoff, K, Desnick, RJ, Stewart, CL, Schuchman, EH (1995) Acid sphingomyelinase deficient mice: a model of types A and B Niemann-Pick disease. Nat Genet 10: pp. 288-293
    8. Quintern, LE, Schuchman, EH, Levran, O, Suchi, M, Ferlinz, K, Reinke, H, Sandhoff, K, Desnick, RJ (1989) Isolation of cDNA clones encoding human acid sphingomyelinase: occurrence of alternatively processed transcripts. EMBO J 8: pp. 2469-2473
    9. Hurwitz, R, Ferlinz, K, Vielhaber, G, Moczall, H, Sandhoff, K (1994) Processing of human acid sphingomyelinase in normal and I-cell fibroblasts. J Biol Chem 269: pp. 5440-5445
    10. Ferlinz, K, Hurwitz, R, Vielhaber, G, Suzuki, K, Sandhoff, K (1994) Occurrence of two molecular forms of human acid sphingomyelinase. Biochem J 301: pp. 855-862
    11. Perrotta, C, Bizzozero, L, Cazzato, D, Morlacchi, S, Assi, E, Simbari, F, Zhang, Y, Gulbins, E, Bassi, MT, Rosa, P, Clementi, E (2010) Syntaxin 4 is required for acid sphingomyelinase activity and apoptotic function. J Biol Chem 285: pp. 40240-40251
    12. Ferlinz, K, Hurwitz, R, Moczall, H, Lansmann, S, Schuchman, EH, Sandhoff, K (1997) Functional characterization of the N-glycosylation sites of human acid sphingomyelinase by site-directed mutagenesis. Eur J Biochem 243: pp. 511-517
    13. Schuchman, EH, Levran, O, Pereira, LV, Desnick, RJ (1992) Structural organization and complete nucleotide sequence of the gene encoding human acid sphingomyelinase (SMPD1). Genomics 12: pp. 197-205
    14. Schissel, SL, Keesler, GA, Schuchman, EH, Williams, KJ, Tabas, I (1998) The cellular trafficking and zinc dependence of secretory and lysosomal sphingomyelinase, two products of the acid sphingomyelinase gene. J Biol Chem 273: pp. 18250-18259
    15. Barsacchi, R, Perrotta, C, Sestili, P, Cantoni, O, Moncada, S, Clementi, E (2002) Cyclic GMP-dependent inhibition of acid sphingomyelinase by nitric oxide: an early step in protection against apoptosis. Cell Death Differ 9: pp. 1248-1255
    16. Dumitru, CA, Gulbins, E (2006) TRAIL activates acid sphingomyelinase via a redox mechanism and releases ceramide to trigger apoptosis. Oncogene 25: pp. 5612-5625
    17. Zeidan, YH, Wu, BX, Jenkins, RW, Obeid, LM, Hannun, YA (2008) A novel role for protein kinase Cdelta-mediated phosphorylation of acid sphingomyelinase in UV light-induced mitochondrial injury. FASEB J 22: pp. 183-193
    18. Garcia-Barros, M, Paris, F, Cordon-Cardo, C, Lyden, D, Rafii, S, Haimovitz-Friedman, A, Fuks, Z, Kolesnick, R (2003) Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 300: pp. 1155-1159
    19. Perrotta, C, Bizzozero, L, Falcone, S, Rovere-Querini, P, Prinetti, A, Schuchman, EH, Sonnino, S, Manfredi, AA, Clementi, E (2007) Nitric oxide boosts chemoimmunotherapy via inhibition of acid sphingomyelinase in a mouse model of melanoma. Cancer Res 67: pp. 7559-7564
    20. Perrotta, C, Palma, C, Falcone, S, Sciorati, C, Clementi, E (2005) Nitric oxide, ceramide and sphingomyelinase-coupled receptors: a tale of enzymes and messengers coordinating cell death, survival and differentiation. Life Sci 77: pp. 1732-1739
    21. Prinetti, A, Millimaggi, D, D鈥橝scenzo, S, Clarkson, M, Bettiga, A, Chigorno, V, Sonnino, S, Pavan, A, Dolo, V (2006) Lack of ceramide generation and altered sphingolipid composition are associated with drug resistance in human ovarian carcinoma cells. Biochem J 395: pp. 311-318
    22. Lovat, PE, Corazzari, M, Goranov, B, Piacentini, M, Redfern, CP (2004) Molecular mechanisms of fenretinide-induced apoptosis of neuroblastoma cells. Ann N Y Acad Sci 1028: pp. 81-89
    23. Grassme, H, Gulbins, E, Brenner, B, Ferlinz, K, Sandhoff, K, Harzer, K, Lang, F, Meyer, TF (1997) Acidic sphingomyelinase mediates entry of N. gonorrhoeae into nonphagocytic cells. Cell 91: pp. 605-615
    24. Simonis, A, Hebling, S, Gulbins, E, Schneider-Schaulies, S, Schubert-Unkmeir, A (2014) Differential activation of acid sphingomyelinase and ceramide release determines invasiveness of Neisseria meningitidis into brain endothelial cells. PLoS Pathog 10: pp. e1004160
    25. Zhang, Y, Li, X, Carpinteiro, A, Gulbins, E (2008) Acid sphingomyelinase amplifies redox signaling in Pseudomonas aeruginosa-induced macrophage apoptosis. J Immunol 181: pp. 4247-4254
    26. Miller, ME, Adhikary, S, Kolokoltsov, AA, Davey, RA (2012) Ebolavirus requires acid sphingomyelinase activity and plasma membrane sphingomyelin for infection. J Virol 86: pp. 7473-7483
    27. Grassme, H, Riehle, A, Wilker, B, Gulbins, E (2005) Rhinoviruses infect human epithelial cells via ceramide-enriched membrane platforms. J Biol Chem 280: pp. 26256-26262
    28. Esen, M, Schreiner, B, Jendrossek, V, Lang, F, Fassbender, K, Grassme, H, Gulbins, E (2001) Mechanisms of Staphylococcus aureus induced apoptosis of human endothelial cells. Apoptosis 6: pp. 431-439
    29. Gulbins, E, Kolesnick, R (2003) Raft ceramide in molecular medicine. Oncogene 22: pp. 7070-7077
    30. Lacour, S, Hammann, A, Grazide, S, Lagadic-Gossmann, D, Athias, A, Sergent, O, Laurent, G, Gambert, P, Solary, E, Dimanche-Boitrel, MT (2004) Cisplatin-induced CD95 redistribution into membrane lipid rafts of HT29 human colon cancer cells. Cancer Res 64: pp. 3593-3598
    31. Mollinedo, F, Gajate, C (2006) Fas/CD95 death receptor and lipid rafts: new targets for apoptosis-directed cancer therapy. Drug Resist Updat 9: pp. 51-73
    32. Tchikov, V, Bertsch, U, Fritsch, J, Edelmann, B, Schutze, S (2011) Subcellular compartmentalization of TNF receptor-1 and CD95 signaling pathways. Eur J Cell Biol 90: pp. 467-475
    33. Edelmann, B, Bertsch, U, Tchikov, V, Winoto-Morbach, S, Perrotta, C, Jakob, M, Adam-Klages, S, Kabelitz, D, Schutze, S (2011) Caspase-8 and caspase-7 sequentially mediate proteolytic activation of acid sphingomyelinase in TNF-R1 receptosomes. EMBO J 30: pp. 379-394
    34. Algeciras-Schimnich, A, Shen, L, Barnhart, BC, Murmann, AE, Burkhardt, JK, Peter, ME (2002) Molecular ordering of the initial signaling events of CD95. Mol Cell Biol 22: pp. 207-220
    35. Herz, J, Pardo, J, Kashkar, H, Schramm, M, Kuzmenkina, E, Bos, E, Wiegmann, K, Wallich, R, Peters, PJ, Herzig, S, Schmelzer, E, Kronke, M, Simon, MM, Utermohlen, O (2009) Acid sphingomyelinase is a key regulator of cytotoxic granule secretion by primary T lymphocytes. Nat Immunol 10: pp. 761-768
    36. Bianco, F, Perrotta, C, Novellino, L, Francolini, M, Riganti, L, Menna, E, Saglietti, L, Schuchman, EH, Furlan, R, Clementi, E, Matteoli, M, Verderio, C (2009) Acid sphingomyelinase activity triggers microparticle release from glial cells. EMBO J 28: pp. 1043-1054
    37. Munzer, P, Borst, O, Walker, B, Schmid, E, Feijge, MA, Cosemans, JM, Chatterjee, M, Schmidt, EM, Schmidt, S, Towhid, ST, Leibrock, C, Elvers, M, Schaller, M, Seizer, P, Ferlinz, K, May, AE, Gulbins, E, Heemskerk, JW, Gawaz, M, Lang, F (2014) Acid sphingomyelinase regulates platelet cell membrane scrambling, secretion, and thrombus formation. Arterioscler Thromb Vasc Biol 34: pp. 61-71
    38. Suzuki, K, Kubota, Y, Sekito, T, Ohsumi, Y (2007) Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells 12: pp. 209-218
    39. Jin, M, Klionsky, DJ (2014) Regulation of autophagy: modulation of the size and number of autophagosomes. FEBS Lett 588: pp. 2457-2463
    40. Galluzzi, L, Pietrocola, F, Levine, B, Kroemer, G (2014) Metabolic control of autophagy. Cell 159: pp. 1263-1276
    41. Mizushima, N (2007) Autophagy: process and function. Genes Dev 21: pp. 2861-2873
    42. Vinod, V, Padmakrishnan, CJ, Vijayan, B, Gopala, S (2014) 鈥楬ow can I halt thee?鈥?The puzzles involved in autophagic inhibition. Pharmacol Res 82: pp. 1-8
    43. Kenific, CM, Debnath, J (2015) Cellular and metabolic functions for autophagy in cancer cells. Trends Cell Biol 25: pp. 37-45
    44. Banerjee, R, Beal, MF, Thomas, B (2010) Autophagy in neurodegenerative disorders: pathogenic roles and therapeutic implications. Trends Neurosci 33: pp. 541-549
    45. Ghavami, S, Shojaei, S, Yeganeh, B, Ande, SR, Jangamreddy, JR, Mehrpour, M, Christoffersson, J, Chaabane, W, Moghadam, AR, Kashani, HH, Hashemi, M, Owji, AA, Los, MJ (2014) Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog Neurobiol 112: pp. 24-49
    46. Kesidou, E, Lagoudaki, R, Touloumi, O, Poulatsidou, KN, Simeonidou, C (2013) Autophagy and neurodegenerative disorders. Neural Regen Res 8: pp. 2275-2283
    47. Sandri, M, Coletto, L, Grumati, P, Bonaldo, P (2013) Misregulation of autophagy and protein degradation systems in myopathies and muscular dystrophies. J Cell Sci 126: pp. 5325-5333
    48. Palma, C, Perrotta, A, Pellegrino, P, Clementi, E, Cervia, D (2014) Skeletal muscle homeostasis in Duchenne muscular dystrophy: modulating autophagy as a promising therapeutic strategy. Front Aging Neurosci 6: pp. 188
    49. Palma, C, Morisi, F, Pambianco, S, Assi, E, Touvier, T, Russo, S, Perrotta, C, Romanello, V, Carnio, S, Cappello, V, Pellegrino, P, Moscheni, C, Bassi, MT, Sandri, M, Cervia, D, Clementi, E (2014) Deficient nitric oxide signalling impairs skeletal muscle growth and performance: involvement of mitochondrial dysregulation. Skelet Muscle 4: pp. 22
    50. Palma, C, Morisi, F, Cheli, S, Pambianco, S, Cappello, V, Vezzoli, M, Rovere-Querini, P, Moggio, M, Ripolone, M, Francolini, M, Sandri, M, Clementi, E (2012) Autophagy as a new therapeutic target in Duchenne muscular dystrophy. Cell Death Dis 3: pp. e418
    51. Tan, CC, Yu, JT, Tan, MS, Jiang, T, Zhu, XC, Tan, L (2014) Autophagy in aging and neurodegenerative diseases: implications for pathogenesis and therapy. Neurobiol Aging 35: pp. 941-957
    52. Jiang, T, Yu, JT, Zhu, XC, Tan, MS, Wang, HF, Cao, L, Zhang, QQ, Shi, JQ, Gao, L, Qin, H, Zhang, YD, Tan, L (2014) Temsirolimus promotes autophagic clearance of amyloid-beta and provides protective effects in cellular and animal models of Alzheimer鈥檚 disease. Pharmacol Res 81: pp. 54-63
    53. Schweichel, JU, Merker, HJ (1973) The morphology of various types of cell death in prenatal tissues. Teratology 7: pp. 253-266
    54. Shen, HM, Codogno, P (2011) Autophagic cell death: Loch Ness monster or endangered species?. Autophagy 7: pp. 457-465
    55. Yu, SW, Baek, SH, Brennan, RT, Bradley, CJ, Park, SK, Lee, YS, Jun, EJ, Lookingland, KJ, Kim, EK, Lee, H, Goudreau, JL, Kim, SW (2008) Autophagic death of adult hippocampal neural stem cells following insulin withdrawal. Stem Cells 26: pp. 2602-2610
    56. Hara, T, Nakamura, K, Matsui, M, Yamamoto, A, Nakahara, Y, Suzuki-Migishima, R, Yokoyama, M, Mishima, K, Saito, I, Okano, H, Mizushima, N (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441: pp. 885-889
    57. Komatsu, M, Wang, QJ, Holstein, GR, Friedrich, VL, Iwata, J, Kominami, E, Chait, BT, Tanaka, K, Yue, Z (2007) Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration. Proc Natl Acad Sci USA 104: pp. 14489-14494
    58. Geng, Y, Kohli, L, Klocke, BJ, Roth, KA (2010) Chloroquine-induced autophagic vacuole accumulation and cell death in glioma cells is p53 independent. Neuro Oncol 12: pp. 473-481
    59. Zhao, Y, Yang, J, Liao, W, Liu, X, Zhang, H, Wang, S, Wang, D, Feng, J, Yu, L, Zhu, WG (2010) Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nat Cell Biol 12: pp. 665-675
    60. Lavieu, G, Scarlatti, F, Sala, G, Levade, T, Ghidoni, R, Botti, J, Codogno, P (2007) Is autophagy the key mechanism by which the sphingolipid rheostat controls the cell fate decision?. Autophagy 3: pp. 45-47
    61. Cervia, D, Perrotta, C, Moscheni, C, Palma, C, Clementi, E (2013) Nitric oxide and sphingolipids control apoptosis and autophagy with a significant impact on Alzheimer鈥檚 disease. J Biol Regul Homeost Agents 27: pp. 11-22
    62. Young, MM, Kester, M, Wang, HG (2013) Sphingolipids: regulators of crosstalk between apoptosis and autophagy. J Lipid Res 54: pp. 5-19
    63. Li, Y, Li, S, Qin, X, Hou, W, Dong, H, Yao, L, Xiong, L (2014) The pleiotropic roles of sphingolipid signaling in autophagy. Cell Death Dis 5: pp. e1245
    64. Garcia-Ruiz, C, Mato, JM, Vance, D, Kaplowitz, N, Fernandez-Checa, JC (2015) Acid sphingomyelinase-ceramide system in steatohepatitis: a novel target regulating multiple pathways. J Hepatol 62: pp. 219-233
    65. Palma, C, Perrotta, C (2012) Ceramide as a target of chemotherapy: its role in apoptosis and autophagy. Clin Lipidol 7: pp. 111-119
    66. Jiang, W, Ogretmen, B (2014) Autophagy paradox and ceramide. Biochim Biophys Acta 1841: pp. 783-792
    67. Vollrath, JT, Sechi, A, Dreser, A, Katona, I, Wiemuth, D, Vervoorts, J, Dohmen, M, Chandrasekar, A, Prause, J, Brauers, E, Jesse, CM, Weis, J, Goswami, A (2014) Loss of function of the ALS protein SigR1 leads to ER pathology associated with defective autophagy and lipid raft disturbances. Cell Death Dis 5: pp. e1290
    68. Taniguchi, M, Kitatani, K, Kondo, T, Hashimoto-Nishimura, M, Asano, S, Hayashi, A, Mitsutake, S, Igarashi, Y, Umehara, H, Takeya, H, Kigawa, J, Okazaki, T (2012) Regulation of autophagy and its associated cell death by 鈥渟phingolipid rheostat鈥? reciprocal role of ceramide and sphingosine 1-phosphate in the mammalian target of rapamycin pathway. J Biol Chem 287: pp. 39898-39910
    69. Lavieu, G, Scarlatti, F, Sala, G, Carpentier, S, Levade, T, Ghidoni, R, Botti, J, Codogno, P (2006) Regulation of autophagy by sphingosine kinase 1 and its role in cell survival during nutrient starvation. J Biol Chem 281: pp. 8518-8527
    70. Hwang, J, Lee, S, Lee, JT, Kwon, TK, Kim, DR, Kim, H, Park, HC, Suk, K (2010) Gangliosides induce autophagic cell death in astrocytes. Br J Pharmacol 159: pp. 586-603
    71. Hwang, J, Lee, HJ, Lee, WH, Suk, K (2010) NF-kappaB as a common signaling pathway in ganglioside-induced autophagic cell death and activation of astrocytes. J Neuroimmunol 226: pp. 66-72
    72. Matarrese, P, Garofalo, T, Manganelli, V, Gambardella, L, Marconi, M, Grasso, M, Tinari, A, Misasi, R, Malorni, W, Sorice, M (2014) Evidence for the involvement of GD3 ganglioside in autophagosome formation and maturation. Autophagy 10: pp. 750-765
    73. Smith, EL, Schuchman, EH (2008) Acid sphingomyelinase overexpression enhances the antineoplastic effects of irradiation in vitro and in vivo. Mol Ther 16: pp. 1565-1571
    74. Patschan, S, Chen, J, Polotskaia, A, Mendelev, N, Cheng, J, Patschan, D, Goligorsky, MS (2008) Lipid mediators of autophagy in stress-induced premature senescence of endothelial cells. Am J Physiol Heart Circ Physiol 294: pp. H1119-H1129
    75. Lee, JK, Jin, HK, Park, MH, Kim, BR, Lee, PH, Nakauchi, H, Carter, JE, He, X, Schuchman, EH, Bae, JS (2014) Acid sphingomyelinase modulates the autophagic process by controlling lysosomal biogenesis in Alzheimer鈥檚 disease. J Exp Med 211: pp. 1551-1570
    76. Toops, KA, Tan, LX, Jiang, Z, Radu, RA, Lakkaraju, A (2015) Cholesterol-mediated activation of acid sphingomyelinase disrupts autophagy in the retinal pigment epithelium. Mol Biol Cell 26: pp. 1-14
    77. Gabande-Rodriguez, E, Boya, P, Labrador, V, Dotti, CG, Ledesma, MD (2014) High sphingomyelin levels induce lysosomal damage and autophagy dysfunction in Niemann Pick disease type A. Cell Death Differ 21: pp. 864-875
    78. Fucho, R, Martinez, L, Baulies, A, Torres, S, Tarrats, N, Fernandez, A, Ribas, V, Astudillo, AM, Balsinde, J, Garcia-Roves, P, Elena, M, Bergheim, I, Lotersztajn, S, Trautwein, C, Appelqvist, H, Paton, AW, Paton, JC, Czaja, MJ, Kaplowitz, N, Fernandez-Checa, JC, Garcia-Ruiz, C (2014) ASMase regulates autophagy and lysosomal membrane permeabilization and its inhibition prevents early stage non-alcoholic steatohepatitis. J Hepatol 61: pp. 1126-1134
    79. Li, X, Xu, M, Pitzer, AL, Xia, M, Boini, KM, Li, PL, Zhang, Y (2014) Control of autophagy maturation by acid sphingomyelinase in mouse coronary arterial smooth muscle cells: protective role in atherosclerosis. J Mol Med 92: pp. 473-485
    80. Petersen, NH, Olsen, OD, Groth-Pedersen, L, Ellegaard, AM, Bilgin, M, Redmer, S, Ostenfeld, MS, Ulanet, D, Dovmark, TH, Lonborg, A, Vindelov, SD, Hanahan, D, Arenz, C, Ejsing, CS, Kirkegaard, T, Rohde, M, Nylandsted, J, Jaattela, M (2013) Transformation-associated changes in sphingolipid metabolism sensitize cells to lysosomal cell death induced by inhibitors of acid sphingomyelinase. Cancer Cell 24: pp. 379-393
    81. Ostenfeld, MS, Hoyer-Hansen, M, Bastholm, L, Fehrenbacher, N, Olsen, OD, Groth-Pedersen, L, Puustinen, P, Kirkegaard-Sorensen, T, Nylandsted, J, Farkas, T, Jaattela, M (2008) Anti-cancer agent siramesine is a lysosomotropic detergent that induces cytoprotective autophagosome accumulation. Autophagy 4: pp. 487-499
    82. Rossi, M, Munarriz, ER, Bartesaghi, S, Milanese, M, Dinsdale, D, Guerra-Martin, MA, Bampton, ET, Glynn, P, Bonanno, G, Knight, RA, Nicotera, P, Melino, G (2009) Desmethylclomipramine induces the accumulation of autophagy markers by blocking autophagic flux. J Cell Sci 122: pp. 3330-3339
    83. Russ, DW, Wills, AM, Boyd, IM, Krause, J (2014) Weakness, SR function and stress in gastrocnemius muscles of aged male rats. Exp Gerontol 50: pp. 40-44
    84. Russ, DW, Krause, J, Wills, A, Arreguin, R (2012) 鈥淪R stress鈥?in mixed hindlimb muscles of aging male rats. Biogerontology 13: pp. 547-555
    85. Wohlgemuth, SE, Seo, AY, Marzetti, E, Lees, HA, Leeuwenburgh, C (2010) Skeletal muscle autophagy and apoptosis during aging: effects of calorie restriction and life-long exercise. Exp Gerontol 45: pp. 138-148
    86. Sui, X, Chen, R, Wang, Z, Huang, Z, Kong, N, Zhang, M, Han, W, Lou, F, Yang, J, Zhang, Q, Wang, X, He, C, Pan, H (2013) Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment. Cell Death Dis 4: pp. e838
    87. Furuya, H, Shimizu, Y, Kawamori, T (2011) Sphingolipids in cancer. Cancer Metastasis Rev 30: pp. 567-576
    88. Bizzozero, L, Cazzato, D, Cervia, D, Assi, E, Simbari, F, Pagni, F, Palma, C, Monno, A, Verdelli, C, Querini, PR, Russo, V, Clementi, E, Perrotta, C (2014) Acid sphingomyelinase determines melanoma progression and metastatic behaviour via the microphtalmia-associated transcription factor signalling pathway. Cell Death Differ 21: pp. 507-520
    89. Bionda, C, Hadchity, E, Alphonse, G, Chapet, O, Rousson, R, Rodriguez-Lafrasse, C, Ardail, D (2007) Radioresistance of human carcinoma cells is correlated to a defect in raft membrane clustering. Free Radic Biol Med 43: pp. 681-694
    90. Haughey, NJ (2010) Sphingolipids in neurodegeneration. Neuromolecular Med 12: pp. 301-305
    91. Haughey, NJ, Bandaru, VV, Bae, M, Mattson, MP (2010) Roles for dysfunctional sphingolipid metabolism in Alzheimer鈥檚 disease neuropathogenesis. Biochim Biophys Acta 1801: pp. 878-886
    92. Assi, E, Cazzato, D, Palma, C, Perrotta, C, Clementi, E, Cervia, D (2013) Sphingolipids and brain resident macrophages in neuroinflammation: an emerging aspect of nervous system pathology. Clin Dev Immunol 2013: pp. 309302
    93. He, X, Huang, Y, Li, B, Gong, CX, Schuchman, EH (2010) Deregulation of sphingolipid metabolism in Alzheimer鈥檚 disease. Neurobiol Aging 31: pp. 398-408
    94. Muhle, C, Amova, V, Biermann, T, Bayerlein, K, Richter-Schmidinger, T, Kraus, T, Reichel, M, Gulbins, E, Kornhuber, J (2014) Sex-dependent decrease of sphingomyelinase activity during alcohol withdrawal treatment. Cell Physiol Biochem 34: pp. 71-81
    95. Gulbins, E, Palmada, M, Reichel, M, Luth, A, Bohmer, C, Amato, D, Muller, CP, Tischbirek, CH, Groemer, TW, Tabatabai, G, Becker, KA, Tripal, P, Staedtler, S, Ackermann, TF, Brederode, J, Alzheimer, C, Weller, M, Lang, UE, Kleuser, B, Grassme, H, Kornhuber, J (2013) Acid sphingomyelinase-ceramide system mediates effects of antidepressant drugs. Nat Med 19: pp. 934-938
    96. Reichel, M, Greiner, E, Richter-Schmidinger, T, Yedibela, O, Tripal, P, Jacobi, A, Bleich, S, Gulbins, E, Kornhuber, J (2010) Increased acid sphingomyelinase activity in peripheral blood cells of acutely intoxicated patients with alcohol dependence. Alcohol Clin Exp Res 34: pp. 46-50
    97. Reichel, M, Beck, J, Muhle, C, Rotter, A, Bleich, S, Gulbins, E, Kornhuber, J (2011) Activity of secretory sphingomyelinase is increased in plasma of alcohol-dependent patients. Alcohol Clin Exp Res 35: pp. 1852-1859
    98. Lista, P, Straface, E, Brunelleschi, S, Franconi, F, Malorni, W (2011) On the role of autophagy in human diseases: a gender perspective. J Cell Mol Med 15: pp. 1443-1457
    99. Schissel, SL, Jiang, X, Tweedie-Hardman, J, Jeong, T, Camejo, EH, Najib, J, Rapp, JH, Williams, KJ, Tabas, I (1998) Secretory sphingomyelinase, a product of the acid sphingomyelinase gene, can hydrolyze atherogenic lipoproteins at neutral pH. Implications for atherosclerotic lesion development. J Biol Chem 273: pp. 2738-2746
    100. Leger, AJ, Mosquea, LM, Li, L, Chuang, W, Pacheco, J, Taylor, K, Luo, Z, Piepenhagen, P, Ziegler, R, Moreland, R, Urabe, A, Jiang, C, Cheng, SH, Yew, NS (2011) Adeno-associated virus-mediated expression of acid sphingomyelinase decreases atherosclerotic lesion formation in apolipoprotein E(-/-) mice. J Gene Med 13: pp. 324-332
    101. Devlin, CM, Leventhal, AR, Kuriakose, G, Schuchman, EH, Williams, KJ, Tabas, I (2008) Acid sphingomyelinase promotes lipoprotein retention within early atheromata and accelerates lesion progression. Arterioscler Thromb Vasc Biol 28: pp. 1723-1730
    102. Oorni, K, Posio, P, Ala-Korpela, M, Jauhiainen, M, Kovanen, PT (2005) Sphingomyelinase induces aggregation and fusion of small very low-density lipoprotein and intermediate-density lipoprotein particles and increases their retention to human arterial proteoglycans. Arterioscler Thromb Vasc Biol 25: pp. 1678-1683
    103. Deaciuc, IV, Nikolova-Karakashian, M, Fortunato, F, Lee, EY, Hill, DB, McClain, CJ (2000) Apoptosis and dysregulated ceramide metabolism in a murine model of alcohol-enhanced lipopolysaccharide hepatotoxicity. Alcohol Clin Exp Res 24: pp. 1557-1565
    104. Liangpunsakul, S, Rahmini, Y, Ross, RA, Zhao, Z, Xu, Y, Crabb, DW (2012) Imipramine blocks ethanol-induced ASMase activation, ceramide generation, and PP2A activation, and ameliorates hepatic steatosis in ethanol-fed mice. Am J Physiol Gastrointest Liver Physiol 302: pp. G515-G523
    105. Samad, F, Hester, KD, Yang, G, Hannun, YA, Bielawski, J (2006) Altered adipose and plasma sphingolipid metabolism in obesity: a potential mechanism for cardiovascular and metabolic risk. Diabetes 55: pp. 2579-2587
    106. Moles, A, Tarrats, N, Morales, A, Dominguez, M, Bataller, R, Caballeria, J, Garcia-Ruiz, C, Fernandez-Checa, JC, Mari, M (2010) Acidic sphingomyelinase controls hepatic stellate cell activation and in vivo liver fibrogenesis. Am J Pathol 177: pp. 1214-1224
    107. Smith, EL, Schuchman, EH (2008) The unexpected role of acid sphingomyelinase in cell death and the pathophysiology of common diseases. Faseb J 22: pp. 3419-3431
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Oncology
    Cancer Research
    Cell Biology
    Biochemistry
    Virology
  • 出版者:Springer Netherlands
  • ISSN:1573-675X
文摘
Autophagy, the main intracellular process of cytoplasmic material degradation, is involved in cell survival and death. Autophagy is regulated at various levels and novel modulators of its function are being continuously identified. An intriguing recent observation is that among these modulators is the sphingolipid metabolising enzyme, Acid Sphingomyelinase (A-SMase), already known to play a fundamental role in apoptotic cell death participating in several pathophysiological conditions. In this review we analyse and discuss the relationship between autophagy and A-SMase describing how A-SMase may regulate it and defining, for the first time, the existence of an A-SMase-autophagy axis. The imbalance of this axis plays a role in cancer, nervous system, cardiovascular, and hepatic disorders.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700