用户名: 密码: 验证码:
Monitoring heat losses using Landsat ETM+ thermal infrared data -a case study at Kuju fumarolic area in Japan
详细信息    查看全文
  • 作者:Md. Bodruddoza Mia (1115) (2115)
    Yasuhiro Fujimitsu (3115)
  • 关键词:Landsat 7 TIR ; radiative heat flux ; heat discharge rate ; Kuju fumaroles ; Japan
  • 刊名:Acta Geophysica
  • 出版年:2013
  • 出版时间:October 2013
  • 年:2013
  • 卷:61
  • 期:5
  • 页码:1262-1278
  • 全文大小:4146KB
  • 参考文献:1. Bromley, C.J., S.M. Van Manen, and W. Mannington (2011), Heat flux from steaming ground: reducing uncertainties. In: / Proc. 36th Workshop on Geothermal Reservoir Engineering, 31 January- February 2011, Stanford University, Stanford, USA, SGP-TR-191.
    2. Ehara, S. (1992), Thermal structure beneath Kuju volcano, central Kyushu, Japan, / J. Volcanol. Geoth. Res. 54,1-, 107-15, DOI: 10.1016/0377-0273(92)90117-V. CrossRef
    3. Ehara, S., Y. Fujimitsu, J. Nishijima, A. Ono, and Y. Nakano (2000), Heat and mass transfer processes after 1995 phreatic eruption of Kuju volcano, central Kyushu, Japan. In: / Proc. World Geothermal Congress 2000, 28 May-0 June 2000, Kyushu-Tohoku, Japan.
    4. Ehara, S., Y. Fujimitsu, J. Nishijima, K. Fukuoka, and M. Ozawa (2005), Change in the thermal state in a volcanic geothermal reservoir beneath an active fumarolic field after the 1995 phreatic eruption of Kuju volcano, Japan. In: / Proc. World Geothermal Congress 2005, 24-9 April 2005, Antalya, Turkey.
    5. Harris, A.J.L., L. Lodato, J. Dehn, and L. Spampinato (2009), Thermal characterization of the Vulcano fumarole field, / Bull. Volcanol. 71,4, 441-58, DOI: 10.1007/s00445-008-0236-8. CrossRef
    6. Hatae, K., Ko. Watanabe, Ka. Watanabe, T. Tsutsui, and K. Motomura (1997), Variation in content of vesiculated glasses in volcanic ash erupted from Kuju volcano in 1995-996, Japan, / J. Volcanol. Soc. Japan 42, 345-53 (in Japanese with English abstract).
    7. Hochstein, M.P., and C.J. Bromley (2001), Steam cloud characteristics and heat output of fumaroles, / Geothermics 30,5, 547-59, DOI: 10.1016/S0375-6505(01)00012-8. CrossRef
    8. Jinnguuji, M., and S. Ehara (1997), Estimation of steam and heat discharge rate from volcanoes using maximum diameter of volcanic steam, / J. Volcanol. Soc. Japan 41, 23-9 (in Japanese with English abstract).
    9. Kamata, H., and T. Kobayashi (1997), The eruptive rate and history of Kuju volcano in Japan during the past 15,000 years, / J. Volcanol. Geoth. Res. 76,1-, 163-71, DOI: 10.1016/S0377-0273(96)00076-5. CrossRef
    10. Kita, I., T. Kai, R. Itoi, M. Ishida, and A. Ueda (2009), Magmatic fluid input to the Kuju-Iwoyama hydrothermal system prior to the 1995 eruption of the Kuju volcano (Kyushu, Japan), / Geothermics 38,3, 294-02, DOI: 10.1016/j.geothermics.2009.04.002. CrossRef
    11. Koga, M., and S. Ehara (2012), Thermal modeling of phreatic eruption processes of Kuju volcano based on the heat discharge rate and fumarolic temperature data, Geothermal and Volcanological Research Report of Kyushu University, 20, 142-52.
    12. Mia, M.B., and Y. Fujimitsu (2011), Study on satellite images based spectral emissivity, land surface temperature and land-cover in and around Kuju volcano, Central Kyushu, Japan, / J. Adv. Sci. Eng. Res. 1,2, 177-91.
    13. Mia, M.B., and Y. Fujimitsu (2012), Mapping hydrothermal altered mineral deposits using Landsat 7 ETM+ image in and around Kuju volcano, Kyushu, Japan, / J. Earth Syst. Sci. 121,4, 1049-057, DOI: 10.1007/ s12040-012-0211-9.
    14. Mia, M.B., C.J. Bromley, and Y. Fujimitsu (2012a), Monitoring heat flux using satellite based imagery at Karapiti (“Craters of the Moon- fumaroles area, Taupo, New Zealand. In: / Proc. 37th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, USA, SGP-TR-194.
    15. Mia, M.B., C.J. Bromley, and Y. Fujimitsu (2012b), Monitoring heat flux using Landsat TM/ETM+ thermal infrared data -A case study at Karapiti (“Craters of the Moon- thermal area, New Zealand, / J. Volcanol. Geoth. Res. 235-36, 1-0, DOI: 10.1016/j.jvolgeores.2012.05.005. CrossRef
    16. Mia, M.B., Y. Fujimitsu, and C.J. Bromely (2012c), Estimation and monitoring heat discharge rates using Landsat ETM+ thermal infrared data: A case study in Unzen geothermal field, Kyushu, Japan. In: / Proc. SPIE “Land Surface Remote Sensing- 29 October 2012, Kyoto, Japan, Vol. 8524, DOI: 10.1117/12.974475.
    17. Mizutani, Y., S. Hayashi, and T. Sugiura (1986), Chemical and isotopic compositions of fumarolic gases from Kuju-Iwoyama, Kyushu, Japan, / Geochem. J. 20,6, 273-85, DOI: 10.2343/geochemj.20.273. CrossRef
    18. Nakaboh, M., H. Ono, M. Sako, Y. Sudo, T. Hashimoto, and A.W. Hurst (2003), Continuing deflation by fumaroles at Kuju Volcano, Japan, / Geophys. Res. Lett. 30,7, 1396, DOI: 10.1029/2002GL016047. CrossRef
    19. NASA (2009), Landsat 7 Science Data Users-Handbook.
    20. Qin, Z., A. Karnieli, and P. Berliner (2001), A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region, / Int. J. Remote Sens. 22,18, 3719-746, DOI: 10.1080/01431160010006971. CrossRef
    21. Savage, S.L., R.L. Lawrence, S.G. Custer, J.T. Jewett, S.L. Powell, and J.A. Shaw (2010), Review of alternative methods for estimating terrestrial emittance and geothermal heat flux for Yellowstone National Park using Landsat imagery, / GISci. Remote Sens. 47,4, 460-79, DOI: 10.2747/1548-1603.47.4.460. CrossRef
    22. Tomiyama, N., K. Koike, and M. Omura (2004), Detection of topographic changes associated with volcanic activities of Mt. Hossho using D-InSAR, / Adv. Space Res. 33,3, 279-83, DOI: 10.1016/S0273-1177(03)00483-6. CrossRef
    23. Valor, E., and V. Caselles (1996), Mapping land surface emissivity from NDVI: Application to European, African, and South American areas, / Remote Sens. Environ. 57,3, 167-84, DOI: 10.1016/0034-4257(96)00039-9. CrossRef
    24. Yamasaki, T., Y. Matsumoto, and M. Hayashi (1970), The geology and hydrothermal alterations of Otake geothermal area, Kujyo volcano group, Kyushu, Japan, / Geothermics 2,1, 197-07, DOI: 10.1016/0375-6505(70)90020-9. CrossRef
  • 作者单位:Md. Bodruddoza Mia (1115) (2115)
    Yasuhiro Fujimitsu (3115)

    1115. Department of Earth Resources Engineering, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
    2115. Department of Geology, Faculty of Earth and Environmental Science, University of Dhaka, Dhaka, Bangladesh
    3115. Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
  • ISSN:1895-7455
文摘
To monitor heat losses using Landsat 7 thermal infrared data from 2002 to 2010 within the active fumarolic region of Kuju volcano in Japan, we used the Stefan-Boltzmann equation for radiative heat flux (RHF) estimation. Heat discharge rate (HDR) was calculated by using the relationship coefficient of RHF and HDR, obtained from two previous studies. The highest total RHF was found to be about 57.7 MW in 2002 and the lowest was about 21.1 MW in 2010. We found the highest HDR, of about 384.5 MW, in 2002 and the lowest, of about 140.8 MW, in 2010. The RHF anomalous areas were showing a declining trend during our study period. The relationship between the land surface temperature (LST) above ambient and RHF was, as expected, in a strong correlation for each result during our study period. Overall, our study was able to delineate the declining trend of heat losses that supports a previous study of similar declining trend of HDR using steam maximum diameter method from the active fumarolic region of Kuju volcano.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700