用户名: 密码: 验证码:
Theoretical and numerical modeling of linear and nonlinear propagation in graphene waveguides
详细信息    查看全文
  • 作者:Alexandros Pitilakis ; Dimitrios Chatzidimitriou…
  • 关键词:Graphene ; Optical waveguides ; Nonlinear waveguides ; Finite element method ; Mode solver ; Photonic waveguides ; Plasmonic waveguides ; Microfiber
  • 刊名:Optical and Quantum Electronics
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:48
  • 期:4
  • 全文大小:870 KB
  • 参考文献:Afshar Vahid, S., Monro, T.M.: A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part i: Kerr nonlinearity. Opt. Express 17(4), 2298–2318 (2009)ADS CrossRef
    Agrawal, G.P.: Nonlinear Fiber Optics, 4th edn. Academic Press, Cambridge (2007)MATH
    Bao, Q., Zhang, H., Wang, B., Ni, Z., Lim, C.H.Y.X., Wang, Y., Tang, D.Y., Loh, K.P.: Broadband graphene polarizer. Nat. Photonics 5(7), 411–415 (2011)ADS CrossRef
    Bludov, Y.V., Ferreira, A., Peres, N.M.R., Vasilevskiy, M.I.: A primer on surface plasmon-polaritons in graphene. Int. J. Mod. Phys. B 27(10), 1341001 (2013). doi:10.​1142/​S021797921341001​4 ADS MathSciNet CrossRef MATH
    Boardman, A., King, N., Rapoport, Y.: Metamaterials driven by gain and special configurations. In: Proceedings of SPIE, vol. 6581, p. 658108 (2007). doi:10.​1117/​12.​724180
    Boyd, R.: Nonlinear Optics. Elsevier, London (2008)
    Butcher, P., Cotter, D. (eds.): The Elements of Nonlinear Optics. Cambridge University Press, Cambridge (1990)
    Chatzidimitriou, D., Pitilakis, A., Kriezis, E.E.: Rigorous calculation of nonlinear parameters in graphene-comprising waveguides. J. Appl. Phys. 118(2), 023105 (2015). doi:10.​1063/​1.​4926501 ADS CrossRef
    Cheng, J.L., Vermeulen, N., Sipe, J.E.: Third order optical nonlinearity of graphene. New J. Phys. 16(5), 053014 (2014). doi:10.​1088/​1367-2630/​16/​5/​053014 ADS CrossRef
    Collin, R.E.: Field Theory of Guided Waves, 2nd edn. Wiley, New Jersey (1990)CrossRef MATH
    Daniel, B.A., Agrawal, G.P.: Vectorial nonlinear propagation in silicon nanowire waveguides: polarization effects. J. Opt. Soc. Am. B 27(5), 956–965 (2010)ADS CrossRef
    Falkovsky, L.A.: Optical properties of graphene and IV–VI semiconductors. phys. Usp. 51(9), 887–897 (2008). doi:10.​1070/​PU2008v051n09ABE​H006625 ADS CrossRef
    Geim, A., Novoselov, K.: The rise of graphene. Nat. Mater 6(3), 183–191 (2007)ADS CrossRef
    Gu, T., Petrone, N., McMillan, J.F., van der Zande, A., Yu, M., Lo, G.Q., Kwong, D.L., Hone, J., Wong, C.W.: Regenerative oscillation and four-wave mixing in graphene optoelectronics. Nat. Photonics 6(8), 554–559 (2012)ADS CrossRef
    Hanson, G.: Dyadic green’s functions for an anisotropic, non-local model of biased graphene. IEEE Trans. Antennas Propag. 56(3), 747–757 (2008)ADS CrossRef
    Hendry, E., Hale, P.J., Moger, J., Savchenko, A.K., Mikhailov, S.A.: Coherent nonlinear optical response of graphene. Phys. Rev. Lett. 105(9), 097401 (2010). doi:10.​1103/​PhysRevLett.​105.​097401 ADS CrossRef
    Jablan, M., Buljan, H., Soljačić, M.: Plasmonics in graphene at infrared frequencies. Phys. Rev. B 80(24), 245435 (2009). doi:10.​1103/​PhysRevB.​80.​245435 ADS CrossRef
    Khurgin, J.B.: Graphene—a rather ordinary nonlinear optical material. Appl. Phys. Lett. 104(16), 161116 (2014). doi:10.​1063/​1.​4873704 ADS CrossRef
    Koos, C., Jacome, L., Poulton, C., Leuthold, J., Freude, W.: Nonlinear silicon-on-insulator waveguides for all-optical signal processing. Opt. Express 15(10), 5976–5990 (2007)ADS CrossRef
    Leon-Saval, S., Birks, T., Wadsworth, W., Russell, P.S.J., Mason, M.: Supercontinuum generation in submicron fibre waveguides. Opt. Express 12(13), 2864–2869 (2004)ADS CrossRef
    Liu, M., Yin, X., Ulin-Avila, E., Geng, B., Zentgraf, T., Ju, L., Wang, F., Zhang, X.: A graphene-based broadband optical modulator. Nature 474(7349), 64–67 (2011)ADS CrossRef
    Liu, M., Yin, X., Zhang, X.: Double-layer graphene optical modulator. Nano Lett. 12(3), 1482-5 (2012)ADS CrossRef
    Midrio, M., Galli, P., Romagnoli, M., Kimerling, L.C., Michel, J.: Graphene-based optical phase modulation of waveguide transverse electric modes. Photonics Res. 2(3), A34–A40 (2014). doi:10.​1364/​PRJ.​2.​000A34 CrossRef
    Mikhailov, S.A., Ziegler, K.: Nonlinear electromagnetic response of graphene: frequency multiplication and the self-consistent-field effects. J. Phys. Condens. Matter 28(38), 384204 (2008). doi:10.​1088/​0953-8984/​20/​38/​384204 ADS CrossRef
    Nikitin, A.Y., Guinea, F., García-Vidal, F.J., Martín-Moreno, L.: Edge and waveguide terahertz surface plasmon modes in graphene microribbons. Phys. Rev. B 84(16), 161407 (2011). doi:10.​1103/​PhysRevB.​84.​161407 ADS CrossRef
    Novoselov, K., Fal’Ko, V., Colombo, L., Gellert, P., Schwab, M., Kim, K.: A roadmap for graphene. Nature 490(7419), 192–200 (2012)ADS CrossRef
    Onural, L.: Impulse functions over curves and surfaces and their applications to diffraction. J. Math. Anal. Appl. 322(1), 18–27 (2006)MathSciNet CrossRef MATH
    Otsuji, T., Tombet, S.A.B., Satou, A., Fukidome, H., Suemitsu, M., Sano, E., Popov, V., Ryzhii, M., Ryzhii, V.: Graphene-based devices in terahertz science and technology. J. Phys. D Appl. Phys. 45(30), 303001 (2012). doi:10.​1088/​0022-3727/​45/​30/​303001 CrossRef
    Pitilakis, A., Kriezis, E.E.: Highly nonlinear hybrid silicon-plasmonic waveguides: analysis and optimization. J. Opt. Soc. Am. B 30(7), 1954–1965 (2013)ADS CrossRef
    Pitilakis, A., Chatzidimitriou, D., Kriezis, E.E.: A strict framework for analyzing linear and nonlinear propagation in photonic and terahertz graphene waveguides. In: 17th International Conference on Transparent Optical Networks (ICTON), 2015, Budapest, Hungary, pp. 1–4 (2015)
    Rapoport, Y.: General method for the derivations of the evolution equations and modeling nonlinear waves in active layered structures with surface and volume nonlinearities. In: Bulletin of Taras Shevchenko National University of Kyiv, Series Physics and Mathematics, vol. 1, pp. 281–288 (2014)
    Rapoport, Y., Grimalsky, V.: Nonlinear surface 2D plasmons and giant second harmonic generation. In: Proceedings of the International Conference Days on Diffraction (DD 2011), vol. 6094387, pp. 168–173 (2011)
    Snyder, A.W., Love, J.D.: Optical Waveguide Theory. Chapman and Hall, London (1983)
    Stauber, T., Peres, N., Geim, A.: Optical conductivity of graphene in the visible region of the spectrum. Phys. Rev. B 78(8), 085432 (2008). doi:10.​1103/​PhysRevB.​78.​085432 ADS CrossRef
    Sun, Z., Hasan, T., Torrisi, F., Popa, D., Privitera, G., Wang, F., Bonaccorso, F., Basko, D.M., Ferrari, A.C.: Graphene mode-locked ultrafast laser. ACS Nano 4(2), 803–810 (2010)CrossRef
    Vakil, A., Engheta, N.: Transformation optics using graphene. Science 332(6035), 1291-4 (2011)ADS CrossRef
    Volakis, J., Chatterjee, A., Kempel, L.: Finite element method for electromagnetics. IEEE Press, New York (1998)CrossRef MATH
    Wu, Y., Yao, B., Cheng, Y., Rao, Y., Gong, Y., Zhou, X., Wu, B., Chiang, K.S.: Four-wave mixing in a microfiber attached onto a graphene film. IEEE Photonics Technol. Lett. 26(3), 249–252 (2014)ADS CrossRef
    Xia, F., Mueller, T., Lin, Y.M., Valdes-Garcia, A., Avouris, P.: Ultrafast graphene photodetector. Nat Nanotechnol. 4(12), 839–843 (2009)ADS CrossRef
    Xia, F., Wang, H., Xiao, D., Dubey, M., Ramasubramaniam, A.: Two-dimensional material nanophotonics. Nat. Photon. 8(12), 899–907 (2014)ADS CrossRef
    Zhang, H., Virally, S., Bao, Q., Ping, L.K., Massar, S., Godbout, N., Kockaert, P.: Z -scan measurement of the nonlinear refractive index of graphene. Opt. Lett. 37(11), 1856–1858 (2012)ADS CrossRef
  • 作者单位:Alexandros Pitilakis (1)
    Dimitrios Chatzidimitriou (1)
    Emmanouil E. Kriezis (1)

    1. Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 54125, Thessaloniki, Greece
  • 刊物主题:Optics, Optoelectronics, Plasmonics and Optical Devices; Electrical Engineering; Characterization and Evaluation of Materials; Computer Communication Networks;
  • 出版者:Springer US
  • ISSN:1572-817X
文摘
A formulation for the theoretical and numerical modeling of electromagnetic wave propagation in graphene-comprising waveguides is presented, targeting applications in the linear and nonlinear regime. Waveguide eigenmodes are rigorously calculated using the finite-element method (FEM) in the linear regime and are subsequently used to extract nonlinear properties in terms of the nonlinear Schrödinger equation framework. Graphene sheets are naturally represented as sheet/2D media and are seamlessly implemented with interface conditions in the FEM, thus greatly enhancing the computational efficiency. This formulation is used to analyze the nonlinear performance of several graphene-comprising waveguide configurations in the optical band, including silicon-based photonic waveguides, metal-based plasmonic waveguides and glass microfibers. Optimal design choices are identified for each configuration and subtle aspects of the FEM-based modeling, especially important for plasmonic waveguides, are highlighted.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700