用户名: 密码: 验证码:
Horizontal Flame Spread Characteristics of Rigid Polyurethane and Molded Polystyrene Foams Under Externally Applied Radiation at Two Different Altitudes
详细信息    查看全文
  • 作者:Yang Zhou ; Huahua Xiao ; Weigang Yan ; Weiguang An ; Lin Jiang ; Jinhua Sun
  • 关键词:Horizontal flame spread ; Rigid polyurethane foam ; Molded polystyrene foam ; External radiation ; Two different altitudes
  • 刊名:Fire Technology
  • 出版年:2015
  • 出版时间:September 2015
  • 年:2015
  • 卷:51
  • 期:5
  • 页码:1195-1216
  • 全文大小:992 KB
  • 参考文献:1.Oladipo A., Wichman I., Experimental study of opposed flow flame spread over wood fiber/thermoplastic composite materials, Combustion and Flame 118 (3) (1999) 317-26.CrossRef
    2.Ohlemiller T., Cleary T., Upward flame spread on composite materials, Fire Safety Journal 32 (2) (1999) 159-72.CrossRef
    3.Oleszkiewicz I., Fire exposure to exterior walls and flame spread in combustible cladding [J], Fire Technology, 1990, 25(4):357-375.CrossRef
    4.J Sun, L Hu, Y Zhang (2013) A review on research of fire dynamics in high-rise buildings. Theor Appl Mech Lett 3:042001CrossRef
    5.Williams FA (1978) Mechanisms of fire spread. Sixteenth International Symposium on Combustion. The Combustion Institute, Pittsburgh, pp 1281-294.
    6.Fernandez-Pello, A. C., Upward Laminar Flame Spread Under the Influence of Externally Applied Thermal Radiation. Combustion Science and Technology, 1977. 17(3-4): p. 87-98.CrossRef
    7.Fernandez-Pello, A. C., Downward Flame Spread Under the Influence of Externally Applied Thermal Radiation. Combustion Science and Technology, 1977. 17(1-2): p. 1-9.CrossRef
    8.Fernandez-Pello A. C., and F. A. Williams, A theory of laminar flame spread over flat surfaces of solid combustibles, Combustion and Flame 28, 251-277 (1977).CrossRef
    9.Hirano T, Sato K (1975) Effects of radiation and convection on gas velocity and temperature profiles of flames spreading over paper. Symp Int Combust. 15(1): 233-41.CrossRef
    10.Takashi K (1975) A study of flame spread over a porous material under external radiation fluxes. Symp Int Combust. 15(1): p. 255-265.CrossRef
    11.Kashiwagi, T. and D. L. Newman, Flame spread over an inclined thin fuel surface. Combustion and Flame, 1976. 26(0): p. 163-177.CrossRef
    12.Magee, R. S., McAlevy III R. F. (1971) The mechanism of flame spread. Journal of Fire and Flammability 2: 271-297.
    13.Quintiere, J., A simplified theory for generalizing results from a radiant panel rate of flame spread apparatus. Fire and Materials, 1981. 5(2): p. 52-60.CrossRef
    14.King-Mon Tu, Quintiere J., Wall flame heights with external radiation. Fire Technology. August 1991, Volume 27, Issue 3, pp 195-203.CrossRef
    15.Brehob, E. G. and A. K. Kulkarni, Experimental measurements of upward flame spread on a vertical wall with external radiation. Fire Safety Journal, 1998. 31(3): p. 181-200.CrossRef
    16.Delichatsios MM et al. (1994) Effects of external heat flux on upward fire spread: measurements on plywood and numerical predictions. Fire Safety Science, p 12.
    17.Wieser D, Jauch P, Willi U. The Influence of High Altitude on Fire Detector Test Fires [J]. Fire Safety Journal, 1997 (29): 195-204.CrossRef
    18.Bento D S, Thomson K A, Gulder O L. Soot formation and temperature field structure in laminar propane-air diffusion flames at elevated pressures [J]. Combustion and Flame, 2006 (145):765-778.CrossRef
    19.Flower W, Bowman C. Soot production in axisymmetric laminar diffusion flames at pressures from one to ten atmospheres, Twenty-First Symposuim (International on Combustion), Volume 21, Issue 1, 1988, Pages 1115-124.CrossRef
    20.Thomson K, Gülder ?, Weckman E, Fraser R, Small wood G, Snelling D, Soot concentration and temperature measurements in co-annular, nonpremixed CH4/air laminar flames at pressure up to 4 MPa, Combustion and Flame, 2005;140: 222-32.CrossRef
    21.J-M Most, P Mandin, J Chen, P Joulain, D Durox, AC Fernande-Pello (1996) Influence of gravity and pressure on pool fire-type diffusion flames. Symposium (International) on Combustion 26(1): 1311-317CrossRef
    22.Hirsch D, Hshieh F Y, Beeson H, Pedley M. Carbon dioxide fire suppressant concentration needs for international space station environments [J]. Journal of Fire Sciences, 2002, 20 (5): 391-399.CrossRef
    23.Nakamura Y, Aoki A. Irradiated ignition of solid materials in reduced pressure atmosphere with various oxygen concentrations - for fire safety in space habitats [J]. Advances in Space Research, 2008 (41): 777-782.CrossRef
    24.Nikitin YV, Komnik YF, Bukhshtab E, Andrievskii V Peculiarities of temperature dependence of thin Bi films resistance. Sov Phys JETR 33: 364-2.
    25.Li Jie, Ji Jie, Zhang Ying, Sun Jinhua, Characteristics of flame spread over the surface of charring solid combustibles at high altitude [J], Chinese Science Bulletin, 2009, 54(11): 1957-1962.CrossRef
    26.Huang X (2011) Study on flame spread characteristics of the typical external wall insulation material PS under different environments. University of Science and Technology of China, Hefei.
    27.Ying Zhang, Xinjie Huang, Qingsong Wang, Jie Ji, Jinhua Sun, Yi Yin, Experimental study on the characteristics of horizontal flame spread over XPS surface on plateau, Journal of Hazardous Material, 2011,189:34-39.CrossRef
    28.Zhang Y (2012) Flame spread behavior characteristics over typical charring solid surfaces. University of Science and Technology of China, Hefei.
    29.Quintiere JG (2006) Fundamenta
  • 作者单位:Yang Zhou (1)
    Huahua Xiao (1)
    Weigang Yan (1)
    Weiguang An (1)
    Lin Jiang (1)
    Jinhua Sun (1)

    1. State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230026, Anhui, People’s Republic of China
  • 刊物类别:Engineering
  • 刊物主题:Civil Engineering
    Mechanics
    Characterization and Evaluation Materials
    Physics
  • 出版者:Springer Netherlands
  • ISSN:1572-8099
文摘
To investigate the characteristics of horizontal flame spread over two kinds of typical insulation materials (rigid polyurethane and molded polystyrene foams) under externally applied radiant flux, a series of laboratory-scale experiments are conducted on the Tibetan plateau (at an altitude of 3,658 m) and in the Hefei plain (at an altitude of 30 m) in China for comparisons. The external radiation intensity ranges from 1.0 kW/m2 to 4.5 kW/m2. The temperature distribution in the solid and gaseous phase and the flame spread rate under different external radiations are examined. The different flame spread behaviors of rigid polyurethane and molded polystyrene foams are scrutinized. The rates of flame spread over the two different materials in the plain are larger than those on the plateau at the same external radiant flux. At both altitudes, the flame spread rate increases with the increasing external radiation intensity. And the square root of the reciprocal of flame spread rate v f ?/2 has a negative linear relation with the external radiation intensity, which is consistent with the predictions of prior theory. The calculation of theoretical value of parameter C is 0.039, which is nearly the same as the slope of fitting line. The mechanism of heat transfer during the flame spread process is analyzed in detail, and the simplified expressions of flame spread rate of the two insulation materials under external applied radiation are achieved. Keywords Horizontal flame spread Rigid polyurethane foam Molded polystyrene foam External radiation Two different altitudes

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700