用户名: 密码: 验证码:
Microwave-Assisted Synthesis of High Dielectric Constant CaCu3Ti4O12 from Sol–Gel Precursor
详细信息    查看全文
  • 作者:Xin Ouyang ; Peng Cao ; Saifang Huang ; Weijun Zhang…
  • 关键词:Microwave synthesis ; CaCu3Ti4O12 ; dielectric properties
  • 刊名:Journal of Electronic Materials
  • 出版年:2015
  • 出版时间:July 2015
  • 年:2015
  • 卷:44
  • 期:7
  • 页码:2243-2249
  • 全文大小:1,303 KB
  • 参考文献:1.X. Hao, J. Adv. Dielect. 03, 1330001 (2013).View Article
    2.N.H. Fletcher, A.D. Hilton, and B.W. Ricketts, J. Phys. D 29, 253 (1996).View Article
    3.P. Kim, N.M. Doss, J.P. Tillotson, P.J. Hotchkiss, M.J. Pan, S.R. Marder, J.Y. Li, J.P. Calame, and J.W. Perry, ACS Nano 3, 2581 (2009).View Article
    4.K. Yu, H. Wang, Y. Zhou, Y. Bai, and Y. Niu, J. Appl. Phys. 113, 034105 (2013).View Article
    5.W. Yang, S. Yu, R. Sun, and R. Du, Acta Mater. 59, 5593 (2011).View Article
    6.M. Arbatti, X.B. Shan, and Z.Y. Cheng, Adv. Mater. 19, 1369 (2007).View Article
    7.P. Barber, S. Balasubramanian, Y. Anguchamy, S. Gong, A. Wibowo, H. Gao, H.J. Ploehn, and H.C. zur Loye, Materials 2, 1697 (2009).
    8.Z.M. Dang, T. Zhou, S.H. Yao, J.K. Yuan, J.W. Zha, H.T. Song, J.Y. Li, Q. Chen, W.T. Yang, and J. Bai, Adv. Mater. 21, 2077 (2009).View Article
    9.Y. Bai, Z.Y. Cheng, V. Bharti, H.S. Xu, and Q.M. Zhang, Appl. Phys. Lett. 76, 3804 (2000).View Article
    10.H.X. Tang, Y.R. Lin, and H.A. Sodano, Adv. Energy Mater. 2, 469 (2012).View Article
    11.M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, and A.W. Sleight, J. Solid State Chem. 151, 323 (2000).View Article
    12.A.P. Ramirez, M.A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, and S.M. Shapiro, Solid State Commun. 115, 217 (2000).View Article
    13.C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, and A.P. Ramirez, Science 293, 673 (2001).View Article
    14.T.B. Adams, D.C. Sinclair, and A.R. West, Adv. Mater. 14, 1321 (2002).View Article
    15.T.B. Adams, D.C. Sinclair, and A.R. West, Phys. Rev. B 73, 094124 (2006).View Article
    16.R. Schmidt, M.C. Stennett, N.C. Hyatt, J. Pokorny, J. Prado-Gonjal, M. Li, and D.C. Sinclair, J. Eur. Ceram. Soc. 32, 3313 (2012).View Article
    17.J.C. Zhao, J. Liu, and G. Ma, Ceram. Int. 38, 1221 (2012).View Article
    18.T.T. Fang, L.T. Mei, and H.F. Ho, Acta Mater. 54, 2867 (2006).View Article
    19.S.Y. Chung, I.D. Kim, and S.J.L. Kang, Nat. Mater. 3, 774 (2004).View Article
    20.C. Puchmark and G. Rujijanagul, Ferroelectrics 415, 107 (2011).View Article
    21.T.B. Adams, D.C. Sinclair, and A.R. West, J. Am. Ceram. Soc. 89, 3129 (2006).View Article
    22.W.X. Yuan, S.K. Hark, and W.N. Mei, J. Ceram. Process. Res. 10, 696 (2009).
    23.L. Cao, P. Liu, J.P. Zhou, Y.J. Wang, L.N. Su, C. Liu, and H.W. Zhang, J. Ceram. Process. Res. 11, 453 (2010).
    24.F. Amaral, M. Valente, and L.C. Costa, Phys. Status Solidi A 208, 2284 (2011).View Article
    25.N. Banerjee and S.B. Krupanidhi, J. Alloys Compd. 509, 4381 (2011).View Article
    26.S.H. Jin, H.P. Xia, Y.P. Zhang, J.P. Guo, and J. Xu, Mater. Lett. 61, 1404 (2007).View Article
    27.J. Liu, R.W. Smith, and W.N. Mei, Chem. Mater. 19, 6020 (2007).View Article
    28.L.J. Liu, H.Q. Fan, P.Y. Fang, and X.L. Chen, Mater. Res. Bull. 43, 1800 (2008).View Article
    29.C. Masingboon, P. Thongbai, S. Maensiri, T. Yamwong, and S. Seraphin, Mater. Chem. Phys. 109, 262 (2008).View Article
    30.D.L. Sun, A.Y. Wu, and S.T. Yin, J. Am. Ceram. Soc. 91, 169 (2008).View Article
    31.B. Barbier, C. Combettes, S. Guillemet-Fritsch, T. Chartier, F. Rossignol, A. Rumeau, T. Lebey, and E. Dutarde, J. Eur. Ceram. Soc. 29, 731 (2009).View Article
    32.J. Lu, D. Wang, and C. Zhao, J. Alloys Compd. 509, 3103 (2011).View Article
    33.B.P. Zhu, Z.Y. Wang, Y. Zhang, Z.S. Yu, J. Shi, and R. Xiong, Mater. Chem. Phys. 113, 746 (2009).View Article
    34.A.F.L. Almeida, R.S. de Oliveira, J.C. Goes, J.M. Sasaki, A.G. Souza, J. Mendes, and A.S.B. Sombra, Mater. Sci. Eng. B 96, 275 (2002).View Article
    35.S. Jesurani, S. Kanagesan, R. Velmurugan, C. Thirupathi, M. Sivakumar, and T. Kalaivani, Mater. Lett. 65, 3305 (2011).View Article
    36.J.J. Liu, Y.C. Sui, C.G. Duan, W.N. Mei, R.W. Smith, and J.R. Hardy, Chem. Mater. 18, 3878 (2006).View Article
    37.N. Banerjee and S.B. Krupanidhi, Curr. Nanosci. 6, 432 (2010).View Article
    38.X. Ouyang, S. Huang, W. Zhang, P. Cao, Z. Huang, and W. Gao, J. Solid State Chem. 211, 58 (2014).View Article
    39.S.D. Hutagalung, M. Ikhwan, M. Ibrahim, and Z.A. Ahmad, Ceram. Int. 34, 939 (2008).View Article
    40.P. Thomas, L.N. Sathapathy, K. Dwarakanath, K.B.R. Varma, and B. Mater, Sci. 30, 567 (2007).
    41.H.T. Yu, H.X. Liu, D.B. Luo, and M.H. Cao, J. Mater. Process. Technol. 208, 145 (2008).View Article
    42.L.C. Chen and F. Spaepen, J. Appl. Phys. 69, 679 (1991).View Article
    43.H. Amorin, A.L. Kholkin, and M.E.V. Costa, J. Eur. Ceram. Soc. 25, 2453 (2005).View Article
    44.M.M. Ahmad, Appl. Phys. Lett. 102, 232908 (2013).View Article
    45.G.G. Raju, Dielectrics in Electric Fields (New York: CRC, 2003), p. 35.View Article
    46.L.X. Feng, X.M. Tang, Y.Y. Yan, X.Z. Chen, Z.K. Jiao, and G.H. Cao, Phys. Status Solidi A 203, R22 (2006).View Article
    47.P.R. Bueno, W.C. Ribeiro, M.A. Ramirez, J.A. Varela, and E. Longo, Appl. Phys. Lett. 90, 142912 (2007).View Article
    48.F. Amaral, L.C. Costa, M.A. Valente, and J. Non-
  • 作者单位:Xin Ouyang (1) (2)
    Peng Cao (1)
    Saifang Huang (1) (2)
    Weijun Zhang (3)
    Zhaohui Huang (2)
    Wei Gao (1)

    1. Department of Chemical and Materials Engineering, The University of Auckland, PB 92019, Auckland, 1142, New Zealand
    2. School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
    3. Department of Materials Science and Engineering, National University of Defense Technology, Changsha, 410073, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Optical and Electronic Materials
    Characterization and Evaluation Materials
    Electronics, Microelectronics and Instrumentation
    Solid State Physics and Spectroscopy
  • 出版者:Springer Boston
  • ISSN:1543-186X
文摘
CaCu<sub>3sub>Ti<sub>4sub>O<sub>12sub> (CCTO) powders derived from sol–gel precursors were calcined and sintered via microwave radiation. The obtained CCTO powders were compared with that obtained via a conventional heating method. For microwave heating, 89.1?wt.% CCTO was achieved from the sol–gel precursor, after only 17?min at 950°C. In contrast, the conventional calcination method required 3?h to generate 87.6?wt.% CCTO content at 1100°C. In addition, the CCTO powders prepared through 17?min of microwave calcination exhibited a small particle size distribution of D<sub>50sub>?=?3.826?μm. It was found that a lengthy hold time of 1?h by microwave sintering is required to obtain a high dielectric constant (3.14?×?103 at 102?Hz) and a reasonably low dielectric loss (0.161) in the sintered CCTO ceramic. Based upon the distinct microstructures, the dielectric responses of the CCTO samples sintered by different methods are attributed to space charge polarization and internal barrier layer capacitor mechanism.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700