用户名: 密码: 验证码:
Symmetrical design in piezoresistive sensing for micromechanical resonator
详细信息    查看全文
  • 作者:Wenshan Wei ; Weilong You ; Chuanguo Dou ; Xiaofei Wang ; Heng Yang
  • 刊名:Microsystem Technologies
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:22
  • 期:4
  • 页码:811-816
  • 全文大小:1,416 KB
  • 参考文献:Agarwal M et al (2007) Acceleration sensitivity in beam-type electrostatic microresonators. Appl Phys Lett 90:014103. doi:10.​1063/​1.​2426884 CrossRef
    Arcamone J, Colinet E, Niel A, Ollier E (2010) Efficient capacitive transduction of high-frequency micromechanical resonators by intrinsic cancellation of parasitic feedthrough capacitances. App Phys Lett 97:043505. doi:10.​1063/​1.​3472217
    Bontemps J et al (2009) 56 MHZ piezoresistive micromechanical oscillator. In: Solid-State Sensors, Actuators and Microsystems Conference, 2009, TRANSDUCERS 2009, International. IEEE, pp 1433–1436
    Faes A, Resta G, Solazzi F, Margesin B (2012) Modeling of gold microbeams as strain and pressure sensors for characterizing MEMS packages. Microsyst Technol 18:1139–1145. doi:10.​1007/​s00542-012-1457-5 CrossRef
    Tang ZY, Fan SC, Xing WW, Guo ZS, Zhang ZY (2011) An electrothermally excited dual beams silicon resonant pressure sensor with temperature compensation. Microsyst Technol 17:1481–1490. doi:10.​1007/​s00542-011-1319-6 CrossRef
    Thaysen J, Boisen A, Hansen O, Bouwstra S (2000) Atomic force microscopy probe with piezoresistive read-out and a highly symmetrical wheatstone bridge arrangement. Sens Actuators A Phys 83:47–53CrossRef
    Van Beek J et al (2007) Scalable 1.1 GHz fundamental mode piezo-resistive silicon MEMS resonator. In: Electron Devices Meeting, 2007, IEDM 2007, IEEE International. IEEE, pp 411–414
    van Beek JTM, Puers R (2012) A review of MEMS oscillators for frequency reference and timing applications. J Micromech Microeng 22:013001
    Wai-Chi W, Azid A, Majlis B (2010) Formulation of stiffness constant and effective mass for a folded beam. Arch Mech 62:405–418MATH
    Wei X, Seshia AA (2013) Differential piezoresistive sensing in a bulk-mode micromechanical resonator. Micro Nano Lett IET 8:107–110
    Wei W, You W, Zhao W, Yu Z, Pang J, Yang H (2014) A novel approach for MEMS with galvanic protection on SOI wafer. Microsyst Technol 1–7
    Wu G, Xu D, Xiong B, Wang Y (2012) Wheatstone bridge piezoresistive sensing for bulk-mode micromechanical resonator. Appl Phys Lett 101:193505CrossRef
  • 作者单位:Wenshan Wei (1) (2)
    Weilong You (1) (2)
    Chuanguo Dou (1)
    Xiaofei Wang (1)
    Heng Yang (1)

    1. State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Science, Shanghai, 200050, People’s Republic of China
    2. Graduate University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
  • 刊物类别:Engineering
  • 刊物主题:Electronics, Microelectronics and Instrumentation
    Nanotechnology
    Mechanical Engineering
    Operating Procedures and Materials Treatment
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1858
文摘
A central symmetrical design in double ended tuning fork (DETF) resonator is demonstrated to remove the high feedthrough signal. The equivalent electrical simulation model for piezoresistive sensing is first built to illustrate that the location arrangement of connection pads plays a decisive role in the response of the high frequency resonators. Both of the symmetrical design and asymmetrical design of the DETF that resonating at 3.1 MHz are fabricated and tested to verifiy that with the same dimension of the resonator structrue, the symmetrical design can help to cancel the feedthrough signal from the output of the wheastone bridge.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700