用户名: 密码: 验证码:
Subcellular localization of endogenous IAA during poplar leaf rhizogenesis revealed by in situ immunocytochemistry
详细信息    查看全文
  • 作者:Ningguang Dong ; Ying Gao ; Yanbin Hao ; Weilun Yin ; Dong Pei
  • 关键词:IAA ; Immunocytochemistry ; Poplar ; Rhizogenesis ; Subcellular localization
  • 刊名:Plant Biotechnology Reports
  • 出版年:2014
  • 出版时间:September 2014
  • 年:2014
  • 卷:8
  • 期:5
  • 页码:377-386
  • 全文大小:1,423 KB
  • 参考文献:1. Avsian-Kretchmer O, Cheng JC, Chen L, Moctezuma E, Sung ZR (2002) Indole acetic acid distribution coincides with vascular differentiation pattern during / Arabidopsis leaf ontogeny. Plant Physiol 130:199-09 CrossRef
    2. Bainbridge K, Guyomarc’h S, Bayer E, Swarup R, Bennett M, Mandel T, Kuhlemeier C (2008) Auxin influx carriers stabilize phyllotactic patterning. Genes Dev 22:810-23 CrossRef
    3. Blakesley D (1994) Auxin metabolism and adventitious root initiation. In: Davis TD, Haissig BE (eds) Biology of adventitious root formation. Plenum Press, New York, pp 143-54 CrossRef
    4. Brunoud G, Wells DM, Oliva M, Larrieu A, Mirabet V, Burrow AH, Beeckman T, Kepinski S, Traas J, Bennett MJ, Vernoux T (2012) A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature 482:103-06 CrossRef
    5. Chen D, Ren Y, Deng Y, Zhao J (2010) Auxin polar transport is essential for the development of zygote and embryo in / Nicotiana tabacum L. and correlated with ABP1 and PM H+-ATPase activities. J Exp Bot 61:1853-867 CrossRef
    6. Chen D, Zhao J (2008) Free IAA in stigmas and styles during pollen germination and pollen tube growth of / Nicotiana tabacum. Physiol Plant 134:202-15 CrossRef
    7. Cooper WC (1935) Hormones in relation to root formation on stem cuttings. Plant Physiol 10:789-94 CrossRef
    8. Correa LR, Stein RJ, Fett-Neto AG (2012) Adventitious rooting of detached / Arabidopsis thaliana leaves. Biol Plant 56:581-84 CrossRef
    9. Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435:441-45 CrossRef
    10. Dong NG, Pei D, Yin WL (2012) Tissue-specific localization and dynamic changes of endogenous IAA during poplar leaf rhizogenesis revealed by in situ immunohistochemistry. Plant Biotechnol Rep 6:165-74 CrossRef
    11. Dong NG, Wang QM, Zhang JP, Pei D (2011) Immunohistochemical localization of indole-3-acetic acid during induction of adventitious root formation from cotyledon explants of walnut. J Am Soc Hortic Sci 136:315-19
    12. Falasca G, Zaghi D, Possenti M, Altamura MM (2004) Adventitious root formation in / Arabidopsis / thaliana thin cell layers. Plant Cell Rep 23:17-5 CrossRef
    13. Friml J, Jones AR (2010) Endoplasmic reticulum: the rising compartment in auxin biology. Plant Physiol 154:458-62 CrossRef
    14. Gangopadhyay M, Chakraborty D, Dewanjee S, Bhattacharya S (2010) Clonal propagation of / Zephyranthes grandiflora using bulbs as explants. Bio Plant 54:793-97 CrossRef
    15. Gatineau F, Fouche JG, Kevers C, Hausman JF, Gaspar T (1997) Quantitative variations of indolyl compounds including IAA, IAA-aspartate and serotonin in walnut microcuttings during root induction. Biol Plant 39:131-37 CrossRef
    16. Han X, Hyun TK, Zhang M, Kumar R, Koh EJ, Kang BH, Lucas WJ, Kim JY (2014) Auxin-callose-mediated plasmodesmal gating is essential for tropic auxin gradient formation and signaling. Dev Cell 28:132-46 CrossRef
    17. Hou ZX, Huang WD (2005) Immunohistochemical localization of IAA and ABP1 in strawberry shoot apexes during floral induction. Planta 222:678-87 CrossRef
    18. Jones AM, Im KH, Savka MA, Wu MJ, DeWitt NG, Shillito R, Binns AN (1998) Auxin-dependent cell expansion mediated by overexpressed auxin-binding protein 1. Science 282:1114-117 CrossRef
    19. Kepinski S, Leyser O (2005) The / Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435:446-51 CrossRef
    20. Kriechbaumer V, Weigang L, Fiesselmann A, Letzel T, Frey M, Gierl A, Glawischnig E (2008) Characterisation of the tryptophan synthase alpha subunit in maize. BMC Plant Biol 8:44. doi:10.1186/1471-2229-8-44 CrossRef
    21. Ljung K, Bhalerao RP, Sandberg G (2001) Sites and homeostatic control of auxin biosynthesis in / Arabidopsis during vegetative growth. Plant J 28:465-74 CrossRef
    22. Ljung K, Hull AK, Celenza J, Yamada M, Estelle M, Normanly J, Sandberg G (2005) Sites and regulation of auxin biosynthesis in / Arabidopsis roots. Plant Cell 17:1090-104 CrossRef
    23. Ludwig-Muller J, Vertocnik A, Town CD (2005) Analysis of indole-3-butyric acid-induced adventitious root formation on / Arabidopsis stem segments. J Exp Bot 56:2095-105 CrossRef
    24. McQueen-Mason SJ, Hamilton RH (1989) The biosynthesis of indole-3-acetic acid from d -tryptophan in Alaska pea plastids. Plant Cell Physiol 30:999-005
    25. Mertens R, Eberle J, Arnscheidt A, Ledebur A, Weiler EW (1985) Monoclonal antibodies to plant growth regulators. II. Indole-3-acetic acid. Planta 166:389-93 CrossRef
    26. Mockaitis K, Estelle M (2008) Auxin receptors and plant development: a new signaling paradigm. Annu Rev Cell Dev Biol 24:55-0 CrossRef
    27. Moctezuma E (1999) Changes in auxin patterns in developing gynophores of the peanut plant ( / Arachis hypogaea L.). Ann Bot 83:235-42 CrossRef
    28. Mravec J, Skupa P, Bailly A, Hoyerova K, Krecek P, Bielach A, Petrasek J, Zhang J, Gaykova V, Stierhof YD, Dobrev PI, Schwarzerova K, Rolcik J, Seifertova D, Luschnig C, Benkova E, Zazimalova E, Geisler M, Friml J (2009) Subcellular homeostasis of phytohormone auxin is mediated by the ER-localized PIN5 transporter. Nature 459:1136-140 CrossRef
    29. Nishimura T, Toyooka K, Stato M, Matsumoto S, Lucas MM, Strnad M, Baluska F, Koshiba T (2011) Immunohistochemical observation of indole-3-acetic acid at the IAA synthetic maize coleoptile tips. Plant Signal Behav 6:2013-022 CrossRef
    30. Nourissier S, Monteuuis O (2008) In vitro rooting of two / Eucalyptus urophylla?×? / Eucalyptus grandis mature clones. In Vitro Cell Dev Biol Plant 44:263-72 CrossRef
    31. Ohmiya A, Hayashi T, Kakiuchi N (1990) Immuno-gold localization of indole-3-acetic acid in peach seedlings. Plant Cell Physiol 31:711-15
    32. Perbal G, Leroux Y, Driss-Ecole D (1982) Mise en evidence de I’AIA-5-3H par autoadiographie dans le coleoptile de Bie. Physiol Plant 54:167-73 CrossRef
    33. Petrásek J, Friml J (2009) Auxin transport routes in plant development. Development 136:2675-688 CrossRef
    34. Petrásek J, Mravec J, Bouchard R, Blakeslee JJ, Abas M, Seifertová D, Wisniewska J, Tadele Z, Kubes M, Covanová M, Dhonukshe P, Skupa P, Benková E, Perry L, Krecek P, Lee OR, Fink GR, Geisler M, Murphy AS, Luschnig C, Zazímalová E, Friml J (2006) PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 312:914-18 CrossRef
    35. Petersson SV, Johansson AI, Kowalczyk M, Makoveychuk A, Wang JY, Moritz T, Grebe M, Benfey PN, Sandberg G, Ljung K (2009) An auxin gradient and maximum in the / Arabidopsis root apex shown by high-resolution cell-specific analysis of IAA distribution and synthesis. Plant Cell 21:1659-668 CrossRef
    36. Quint M, Gray WM (2006) Auxin signaling. Curr Opin Plant Biol 9:448-53 CrossRef
    37. Schwalm K, Aloni R, Langhans M, Heller W, Stich S, Ullrich CI (2003) Flavonoid-related regulation of auxin accumulation in / Agrobacterium tumefaciens-induced plant tumors. Planta 218:163-78 CrossRef
    38. Shi L, Miller I, Moore R (1993) Immunocytochemical localization of indole-3-acetic acid in primary root of / Zea mays. Plant Cell Environ 16:967-73 CrossRef
    39. Shimomura S, Watanabe S, Ichikawa H (1999) Characterization of auxin-binding protein 1 from tobacco: content, localization and auxin-binding activity. Planta 209:118-25 CrossRef
    40. Shishova M, Lindberg S (2010) A new perspective on auxin perception. J Plant Physiol 167:417-22 CrossRef
    41. Sun YP, Zhang DL, Smagula J (2010) Micropropagation of / Ilex glabra (L.) A. Gray. HortScience 45:805-08
    42. Vanneste S, Friml J (2009) Auxin: a trigger for change in plant development. Cell 136:1005-016 CrossRef
    43. Wisniewska J, Xu J, Seifertová D, Brewer PB, Ruzicka K, Blilou I, Rouquié D, Benková E, Scheres B, Friml J (2006) Polar PIN localization directs auxin flow in plants. Science 312:883 CrossRef
    44. Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95:707-35 CrossRef
    45. Xuan W, Zhu FY, Xu S, Huang BK, Ling TF, Qi JY, Ye MB, Shen WB (2008) The heme oxygenase/carbon monoxide system is involved in the auxin-induced cucumber adventitious rooting process. Plant Physiol 148:881-93 CrossRef
    46. Yang Y, Hammes UZ, Taylor CG, Schachtman DP, Nielsen E (2006) High-affinity auxin transport by the AUX1 influx carrier protein. Curr Biol 16:1123-127 CrossRef
    47. Zhao Y (2010) Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol 61:49-4 CrossRef
    48. Zhao Y, Christensen SK, Fankhauser C, Cashman JR, Cohen JD, Weigel D, Chory J (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291:306-09 CrossRef
  • 作者单位:Ningguang Dong (1) (2) (3)
    Ying Gao (2)
    Yanbin Hao (1)
    Weilun Yin (3)
    Dong Pei (2)

    1. Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, People’s Republic of China
    2. Research Institute of Forestry, Chinese Academy of Forestry, Wan Shou Shan Hou, Haidian District, Beijing, 100091, People’s Republic of China
    3. College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People’s Republic of China
  • ISSN:1863-5474
文摘
Poplar 741 [Populus alba?×?(P. davidiana?+?P. simonii)?×?P. tomentosa] leaves were rooted within 8?days when cultured on 1/2 MS medium. The subcellular localization of endogenous indole-3-acetic acid (IAA) in the rhizogenesis was investigated, using an immunocytochemical approach. The results of IAA subcellular localization revealed organelle-specific distribution. Three days after root induction, IAA in vascular cambium cells of the basal region of the petiole was distributed mainly in the plasma membrane, endoplasmic reticulum (ER), and nucleus, with a lesser amount in the cytoplasm. In phloem of the basal region of the petiole, IAA was detected in the plasma membrane and ER of the companion cell and in the plasma membrane of the sieve element. In xylem of the basal region of the petiole, no IAA gold particles were labeled. In mesophyll cells IAA was distributed in the chloroplast starch grains before root induction, and the amount in the chloroplast starch grains increased after 3?days after root induction. This suggests that the plasma membrane and nucleus of cambium cells may be the target sites where IAA performs its physiological activities during poplar leaf rhizogenesis. IAA polar transport from lamina mesophyll to the basal region of the petiole during rhizogenesis is mediated by phloem. The starch grains of mesophyll chloroplasts appeared to accumulate IAA and may be a source of IAA during poplar leaf rhizogenesis. Novel and direct evidence regarding the function of IAA during rhizogenesis is provided in this study.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700