用户名: 密码: 验证码:
Chiral Lanthanide Metal-Organic Frameworks
详细信息    查看全文
  • 作者:Weisheng Liu (3)
    Xiaoliang Tang (3)
  • 关键词:Chiral metal ; organic frameworks ; Chirality ; Lanthanide ; Structures of MOFs ; Synthesis of MOFs
  • 刊名:Structure & Bonding
  • 出版年:2015
  • 出版时间:2015
  • 年:2015
  • 卷:163
  • 期:1
  • 页码:29-74
  • 全文大小:3,188 KB
  • 参考文献:1. Gardner M (1990) The new ambidextrous universe, 3rd edn. W. H. Freeman & Co., New York
    2. Heilbronner E, Dunitz JD (1993) Reflections on symmetry. VHCA, Basel
    3. Aboul-Enein HY, Wainer IW (1997) The impact of stereochemistry on drug development and use. Wiley, New York
    4. Li CY, Cheng SZ, Weng X et al (2001) Left or right, it is a matter of one methylene unit. J Am Chem Soc 123(10):2462鈥?463 CrossRef
    5. Ari毛ns EJ (1986) Stereochemistry: a source of problems in medicinal chemistry. Med Res Rev 6(4):451鈥?66 CrossRef
    6. Maier NM, Franco P, Lindner W (2001) Separation of enantiomers: needs, challenges, perspectives. J Chromatogr A 906(1鈥?):3鈥?3 CrossRef
    7. Kuroda R, Endo B, Abe M et al (2009) Chiral blastomere arrangement dictates zygotic left-right asymmetry pathway in snails. Nature 462(7274):790鈥?94 CrossRef
    8. Capdevila J, Vogan KJ, Tabin CJ et al (2000) Mechanisms of left-right determination in vertebrates. Cell 101(1):9鈥?1 CrossRef
    9. Francotte E, Lindner W (2006) Chirality in drug research. Wiley-VCH, Weinheim CrossRef
    10. Blaschke G, Kraft HP, Fickentscher K et al (1979) Chromatographic separation of racemic thalidomide and teratogenic activity of its enantiomers. Drug Res 29(10):1640鈥?642
    11. Nobel Prize homepage. http://nobelprize.org/nobel_prizes/chemistry/laureates/2001/
    12. Noyori R (2002) Asymmetric catalysis: science and opportunities. Angew Chem Int Ed 41(12):2008鈥?022 CrossRef
    13. Sharpless BK (2002) Searching for new reactivity. Angew Chem Int Ed 41(12):2024鈥?032 CrossRef
    14. Knowles WS (2002) Asymmetric hydrogenations. Angew Chem Int Ed 41(12):1998鈥?007 CrossRef
    15. Morrison JD (1985) Asymmetric synthesis. Academic, New York
    16. Subramanian G (2001) Chiral separation techniques. Wiley-VCH, Weinheim
    17. Ward TJ (2006) Chiral separations. Anal Chem 78(12):3947鈥?956 CrossRef
    18. Hattori H (1995) Heterogeneous basic catalysis. Chem Rev 95(3):537鈥?58 CrossRef
    19. Mizuno N, Misono M (1998) Heterogeneous catalysis. Chem Rev 98(1):199鈥?18 CrossRef
    20. Trindade AF, Gois PM, Afonso CA (2009) Recyclable stereoselective catalysts. Chem Rev 109(2):418鈥?14 CrossRef
    21. Kesanli B, Lin W (2003) Chiral porous coordination networks: rational design and applications in enantioselective processes. Coord Chem Rev 246(1鈥?):305鈥?26 CrossRef
    22. Ngo HL, Lin W (2005) Hybrid organic鈥搃norganic solids for heterogeneous asymmetric catalysis. Top Catal 34:85鈥?2 CrossRef
    23. Ma L, Abney C, Lin W (2009) Enantioselective catalysis with homochiral metal-organic frameworks. Chem Soc Rev 38(5):1248鈥?256 CrossRef
    24. Kim K, Banerjee M, Yoon M et al (2010) Chiral metal-organic porous materials: synthetic strategies and applications in chiral separation and catalysis. Top Curr Chem 293:115鈥?53 CrossRef
    25. Bradshaw D, Claridge JB, Cussen EJ et al (2005) Design, chirality, and flexibility in nanoporous molecule-based materials. Acc Chem Res 38(4):273鈥?82 CrossRef
    26. Song F, Zhang T, Wang C et al (2012) Chiral porous metal-organic frameworks with dual active sites for sequential asymmetric catalysis. Proc R Soc A 468(2143):2035鈥?052 CrossRef
    27. F茅rey G (2008) Hybrid porous solids: past, present, future. Chem Soc Rev 37(1):191鈥?14 CrossRef
    28. Verbiest T, Elshocht SV, Kauranen M et al (1998) Strong enhancement of nonlinear optical properties through supramolecular chirality. Science 282(5390):913鈥?15 CrossRef
    29. Seo JS, Whang D, Lee H et al (2000) A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature 404(6781):982鈥?86 CrossRef
    30. Huang CH (2010) Rare earth coordination chemistry: fundamentals and applications. Wiley, UK CrossRef
    31. Yaghi OM, O鈥橩eeffe M, Ockwig NW et al (2003) Reticular synthesis and the design of new materials. Nature 423(6941):705鈥?14 CrossRef
    32. Rosi NL, Kim J, Eddaoudi M et al (2005) Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. J Am Chem Soc 127(5):1504鈥?518 CrossRef
    33. Sabbatini N, Guardigli M, Lehn JM (1993) Luminescent lanthanide complexes as photochemical supramolecular devices. Coord Chem Rev 123(1鈥?):201鈥?28 CrossRef
    34. Allendorf MD, Bauer CA, Bhakta RK et al (2009) Luminescent metal-organic frameworks. Chem Soc Rev 38(5):1330鈥?352 CrossRef
    35. Binnemans K (2009) Lanthanide-based luminescent hybrid materials. Chem Rev 109(9):4283鈥?374 CrossRef
    36. Carlos LD, Ferreira RA, Bermudez Vde Z et al (2009) Lanthanide-containing light-emitting organic-inorganic hybrids: a bet on the future. Adv Mater 21(5):509鈥?34 CrossRef
    37. Eliseeva SV, B眉nzli JC (2010) Lanthanide luminescence for functional materials and bio-sciences. Chem Soc Rev 39(1):189鈥?27 CrossRef
    38. B眉nzli JC, Piguet C (2005) Taking advantage of luminescent lanthanide ions. Chem Soc Rev 34(12):1048鈥?077 CrossRef
    39. Zhou TH, Zhang J, Zhang HX et al (2011) A ligand-conformation driving chiral generation and symmetry-breaking crystallization of a zinc(II) organoarsonate. Chem Commun 47(31):8862鈥?864 CrossRef
    40. Yuan G, Shan KZ, Wang XL et al (2010) A series of novel chiral lanthanide coordination polymers with channels constructed from 16Ln-based cage-like building units. CrystEngComm 12(4):1147鈥?152 CrossRef
    41. Crassous J (2009) Chiral transfer in coordination complexes: towards molecular materials. Chem Soc Rev 38(3):830鈥?45 CrossRef
    42. Lin X, Blake AJ, Wilson C et al (2006) A porous framework polymer based on a zinc(II) 4,4鈥?bipyridine-2,6,2鈥?6鈥?tetracarboxylate: synthesis, structure, and 鈥渮eolite-like鈥?behaviors. J Am Chem Soc 128(33):10745鈥?0753 CrossRef
    43. Zhang J, Chen S, Wu T et al (2008) Homochiral crystallization of microporous framework materials from achiral precursors by chiral catalysis. J Am Chem Soc 130(39):12882鈥?2883 CrossRef
    44. Lin Z, Slawin AM, Morris RE (2007) Chiral induction in the ionothermal synthesis of a 3-D coordination polymer. J Am Chem Soc 129(16):4880鈥?881 CrossRef
    45. Kang Y, Chen S, Wang F et al (2011) Induction in urothermal synthesis of chiral porous materials from achiral precursors. Chem Commun 47(17):4950鈥?952 CrossRef
    46. Qiu S, Zhu G (2009) Molecular engineering for synthesizing novel structures of metal-organic frameworks with multifunctional properties. Coord Chem Rev 253(23鈥?4):2891鈥?911 CrossRef
    47. P茅rez-Garc铆a L, Amabilino DB (2002) Spontaneous resolution under supramolecular control. Chem Soc Rev 31(6):342鈥?56 CrossRef
    48. P茅rez-Garc铆a L, Amabilino DB (2007) Spontaneous resolution, whence and whither: from enantiomorphic solids to chiral liquid crystals, monolayers and macro- and supra-molecular polymers and assemblies. Chem Soc Rev 36(6):941鈥?67 CrossRef
    49. Ma Y, Han Z, He Y et al (2007) A 3D chiral Zn(II) coordination polymer with triple Zn-oba-Zn helical chains (oba = 4,4鈥?oxybis(benzoate)). Chem Commun 40:4107鈥?109 CrossRef
    50. Yoon M, Srirambalaji R, Kim K (2012) Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. Chem Rev 112(2):1196鈥?231 CrossRef
    51. Liu Y, Xuan W, Cui Y (2010) Engineering homochiral metal-organic frameworks for heterogeneous asymmetric catalysis and enantioselective separation. Adv Mater 22(37):4112鈥?135 CrossRef
    52. Zeng MH, Wang B, Wang XY et al (2006) Chiral magnetic metal-organic frameworks of dimetal subunits: magnetism tuning by mixed-metal compositions of the solid solutions. Inorg Chem 45(18):7069鈥?076 CrossRef
    53. Dybtsev DN, Yutkin MP, Peresypkina EV et al (2007) Isoreticular homochiral porous metal-organic structures with tunable pore sizes. Inorg Chem 46(17):6843鈥?845 CrossRef
    54. Zhang J, Yao YG, Bu XH (2007) Comparative study of homochiral and racemic chiral metal-organic frameworks built from camphoric acid. Chem Mater 19(21):5083鈥?089 CrossRef
    55. Song YM, Huang HX, Sun GM et al (2011) Multi-functional magnetic, ferroelectric, and fluorescent homochiral lanthanide (Ln)-camphorate compounds built on helical {Ln-O}n inorganic substructures. CrystEngComm 13(22):6827鈥?830 CrossRef
    56. Jhu ZR, Yang CI, Lee GH (2013) Two new series of rare-earth organic frameworks involving two structural architectures: syntheses, structures and magnetic properties. CrystEngComm 15(13):2456鈥?465 CrossRef
    57. Sun ML, Zhang X, Huang YY et al (2014) Homochiral 3D lanthanide camphorates with high thermal stability. New J Chem 38(1):55鈥?8 CrossRef
    58. Sun ML, Zhang J, Lin QP et al (2010) Multifunctional homochiral lanthanide camphorates with mixed achiral terephthalate ligands. Inorg Chem 49(20):9257鈥?264 CrossRef
    59. Dang DB, An B, Bai Y et al (2013) Three-dimensional homochiral manganese-lanthanide frameworks based on chiral camphorates with multi-coordination modes. Chem Commun 49(22):2243鈥?245 CrossRef
    60. Tan X, Du YZ, Che YX et al (2013) Syntheses, structures and magnetic properties of one family of 3d-4f chiral metal-organic frameworks (MOFs) based on D(+)-camphoric acid. Inorg Chem Commun 36:63鈥?7 CrossRef
    61. Qiu Y, Liu Z, Mou J et al (2010) Rationally designed and controlled syntheses of different series of 4d-4f heterometallic coordination frameworks based on lanthanide carboxylate and Ag(IN)2 substructures. CrystEngComm 12(1):277鈥?90 CrossRef
    62. Qu ZR, Ye Q, Zhao H et al (2008) Homochiral laminar europium metal鈥搊rganic framework with unprecedented giant dielectric anisotropy. Chem Eur J 14(11):3452鈥?456 CrossRef
    63. Ye Q, Fu DW, Tian H et al (2008) Multiferroic homochiral metal鈭抩rganic framework. Inorg Chem 47(3):772鈥?74 CrossRef
    64. Thushari S, Cha JAK, Sung HHY et al (2005) Microporous chiral metal coordination polymers: hydrothermal synthesis, channel engineering and stability of lanthanide tartrates. Chem Commun 44:5515鈥?517 CrossRef
    65. Amghouz Z, Roces L, Garcia-Granda S et al (2010) Metal organic frameworks assembled from Y(III), Na(I), and chiral flexible-achiral rigid dicarboxylates. Inorg Chem 49(17):7917鈥?926 CrossRef
    66. Amghouz Z, Garcia-Granda S, Garcia JR et al (2012) Series of metal organic frameworks assembled from Ln(III), Na(I), and chiral flexible-achiral rigid dicarboxylates exhibiting tunable UV-vis-IR light emission. Inorg Chem 51(3):1703鈥?716 CrossRef
    67. Gao Q, Wang X, Jacobson AJ (2011) Homochiral frameworks formed by reactions of lanthanide ions with a chiral antimony tartrate secondary building unit. Inorg Chem 50(18):9073鈥?082 CrossRef
    68. Li XF, Liu TF, Gao ZX et al (2011) Syntheses and characterization of homochiral 3-dimensional lanthanide-organic frameworks based on Ln4O4 clusters and L-aspartic acid. Chin J Struct Chem 30(5):757鈥?63
    69. Lin W (2007) Metal-organic frameworks for asymmetric catalysis and chiral separations. Mrs Bull 32(7):544鈥?48 CrossRef
    70. Evans OR, Ngo HL, Lin W (2001) Chiral porous solids based on lamellar lanthanide phosphonates. J Am Chem Soc 123(42):10395鈥?0396 CrossRef
    71. Cui Y, Ngo HL, White PS et al (2002) Homochiral 3D lanthanide coordination networks with an unprecedented 4966 topology. Chem Commun 16:1666鈥?667 CrossRef
    72. Ngo HL, Lin W (2002) Chiral crown ether pillared lamellar lanthanide phosphonates. J Am Chem Soc 124(48):14298鈥?4299 CrossRef
    73. Jeong KS, Lee BH, Li Q et al (2011) Near achiral metal-organic frameworks from conformationally flexible homochiral ligands resulted by the preferential formation of pseudo-inversion center in asymmetric unit. CrystEngComm 13(5):1277鈥?279 CrossRef
    74. Hao Z, Song S, Su S et al (2013) Design and synthesis of enantiomerically pure chiral sandwichlike lamellar structure: new explorations from molecular building blocks to three-dimensional morphology. Cryst Growth Des 13(3):976鈥?80 CrossRef
    75. Liang X, Zhang F, Zhao H et al (2014) A proton-conducting lanthanide metal-organic framework integrated with a dielectric anomaly and second-order nonlinear optical effect. Chem Commun 50(49):6513鈥?516 CrossRef
    76. Dang D, Wu P, He C et al (2010) Homochiral metal-organic frameworks for heterogeneous asymmetric catalysis. J Am Chem Soc 132(41):14321鈥?4323 CrossRef
    77. Wang WH, Tian HR, Zhou ZC et al (2012) Two unusual chiral lanthanide-sulfate frameworks with helical tubes and channels constructed from interweaving two double-helical chains. Cryst Growth Des 12(5):2567鈥?571 CrossRef
    78. Gil-Hernandez B, Maclaren JK, Hoeppe HA et al (2012) Homochiral lanthanoid(III) mesoxalate metal-organic frameworks: synthesis, crystal growth, chirality, magnetic and luminescent properties. CrystEngComm 14(8):2635鈥?644 CrossRef
    79. Zhang LM, Deng DY, Peng G et al (2012) A series of three-dimensional (3D) chiral lanthanide coordination polymers generated by spontaneous resolution. CrystEngComm 14(23):8083鈥?089 CrossRef
    80. Guo X, Zhu G, Li Z et al (2006) A lanthanide metal-organic framework with high thermal stability and available Lewis-acid metal sites. Chem Commun 30:3172鈥?174 CrossRef
    81. Gustafsson M, Li Z, Zhu G et al (2008) A porous chiral lanthanide metal-organic framework with high thermal stability. Stud Surf Sci Catal 174A:451鈥?54 CrossRef
    82. Jiang HL, Tsumori N, Xu Q (2010) A series of (6,6)-connected porous lanthanide-organic framework enantiomers with high thermostability and exposed metal sites: scalable syntheses, structures, and sorption properties. Inorg Chem 49(21):10001鈥?0006 CrossRef
    83. Majeed Z, Mondal KC, Kostakis GE et al (2010) LnNa(PhCO2)4 (Ln = Ho, Dy): the first examples of chiral srs 3D networks constructed using the monotopic benzoate ligand. Chem Commun 46(15):2551鈥?553 CrossRef
    84. Wang MX, Long LS, Huang RB et al (2011) Influence of halide ions on the chirality and luminescent property of ionothermally synthesized lanthanide-based metal-organic frameworks. Chem Commun 47(35):9834鈥?836 CrossRef
    85. Rossin A, Giambastiani G, Peruzzini M et al (2012) Amine-templated polymeric lanthanide formates: synthesis, characterization, and applications in luminescence and magnetism. Inorg Chem 51(12):6962鈥?968 CrossRef
    86. Masu H, Tominaga M, Katagiri K et al (2006) 2-D coordination network of a cyclic amide with a lanthanide metal cation and its columnar stacking. CrystEngComm 8(8):578鈥?80 CrossRef
    87. Tang Y, Tang K, Liu W et al (2008) Assembly, crystal structure, and luminescent properties of three-dimensional (10,3)-a netted rare earth coordination polymers. Sci China Chem 51(7):614鈥?22 CrossRef
    88. Yan X, Cai Z, Yi C et al (2011) Anion-induced structures and luminescent properties of chiral lanthanide-organic frameworks assembled by an achiral tripodal ligand. Inorg Chem 50(6):2346鈥?353 CrossRef
    89. Tang K, Yun R, Lu Z et al (2013) High CO2/N2 selectivity and H2 adsorption of a novel porous yttrium metal-organic framework based on N,N鈥?N鈥?tris(isophthalyl)-1,3,5-benzenetricarboxamide. Cryst Growth Des 13(4):1382鈥?385 CrossRef
    90. Devic T, Wagner V, Guillou N et al (2011) Synthesis and characterization of a series of porous lanthanide tricarboxylates. Microporous Mesoporous Mater 140(1鈥?):25鈥?3 CrossRef
    91. Mu B, Li F, Huang Y et al (2012) Breathing effects of CO2 adsorption on a flexible 3D lanthanide metal-organic framework. J Mater Chem 22(20):10172鈥?0178 CrossRef
    92. Lin Z, Zou R, Liang J et al (2012) Pore size-controlled gases and alcohols separation within ultramicroporous homochiral lanthanide-organic frameworks. J Mater Chem 22(16):7813鈥?818 CrossRef
    93. Gu X, Xue D (2006) Spontaneously resolved homochiral 3D lanthanide鈥搒ilver heterometallic coordination framework with extended helical Ln鈥揙鈥揂g subunits. Inorg Chem 45(23):9257鈥?261 CrossRef
    94. Peng G, Ma L, Cai J et al (2011) Influence of alkali metal cation (Li(I), Na(I), K(I)) on the construction of chiral and achiral heterometallic coordination polymers. Cryst Growth Des 11(6):2485鈥?492 CrossRef
    95. Ma YS, Li H, Wang JJ et al (2007) Three-dimensional lanthanide(III)鈥揷opper(II) compounds based on an unsymmetrical 2-pyridylphosphonate ligand: an experimental and theoretical study. Chem Eur J 13(17):4759鈥?769 CrossRef
    96. Dong DP, Liu L, Sun ZG et al (2011) Synthesis, crystal structures, and luminescence and magnetic properties of 3D chiral and achiral lanthanide diphosphonates containing left- and right-handed helical chains. Cryst Growth Des 11(12):5346鈥?354 CrossRef
    97. Gil-Hernandez B, Hoppe HA, Vieth JK et al (2010) Spontaneous resolution upon crystallization of chiral La(III) and Gd(III) MOFs from achiral dihydroxymalonate. Chem Commun 46(43):8270鈥?272 CrossRef
    98. Dang S, Zhang JH, Sun ZM et al (2012) Luminescent lanthanide metal-organic frameworks with a large SHG response. Chem Commun 48(90):11139鈥?1141 CrossRef
    99. Zhang M, Lu J, Hu R (2012) Chiral (6,3) network assembled by lanthanide and changeful dihydroxyfumaric acid. Chin J Chem 30(2):228鈥?32 CrossRef
    100. Lu J, Mang D, Li L et al (2008) Hydrothermal synthesis of a chiral rare earth iodate (Gd(IO3)3路H2O) showing the rare (3,8)-connected (43)(4路62) (49路617路82) topology. J Coord Chem 61(9):1406鈥?411 CrossRef
    101. Ju W, Zhang D, Zhu D et al (2012) L- and D-[Ln(HCO2)(SO4)(H2O)]n (Ln = La, Ce, Pr, Nd, and Eu): chiral enantiomerically 3D architectures constructed by double-[Ln-O]n-helices. Inorg Chem 51(24):13373鈥?3379 CrossRef
    102. Shi FN, Paz FAA, Ribeiro-Claro P et al (2013) Transposition of chirality from diphosphonate metal-organic framework precursors onto porous lanthanide pyrophosphates. Chem Commun 49(99):11668鈥?1670 CrossRef
  • 作者单位:Weisheng Liu (3)
    Xiaoliang Tang (3)

    3. College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
  • 丛书名:Lanthanide Metal-Organic Frameworks
  • ISBN:978-3-662-45773-3
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Inorganic Chemistry
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1616-8550
文摘
Chiral metal-organic frameworks (MOFs) have attracted much attention, not only due to their potential applications in enantioselective separation and catalysis, but also because of many advantages such as the high density of active catalytic centers, high level of porosity, regular and reliable crystalline nature, and relatively easy immobilization as compared to other heterogeneous systems. As metal-connecting nodes of MOFs, a large number of chemical synthetic strategies have focused on the transition metal ions which exhibit specific coordination geometries and restricted stereochemistry in the past two decades. However, the researches on chiral lanthanide MOFs are still limited up to now because of high coordination numbers, kinetic lability, weak stereochemical preference, and more variable nature of the coordination sphere for lanthanide ions. In this chapter, we would give a brief introduction to highlight the synthetic approaches reported and the structural features of chiral lanthanide MOFs or coordination polymer, which may be beneficial to explore structurally and functionally defined chiral solid materials.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700