用户名: 密码: 验证码:
Characterization of hemangioblast in umbilical arteries of mid-gestation mouse embryos
详细信息    查看全文
  • 作者:Weixi Niu (1) (2)
    He Huang (3)
    Liangyu Zhao (4)
    Zhuan Li (5)
    Wenyan He (5)
    Bing Liu (5)
    Longgui Li (1)
    Jiaxiang Xiong (6)
  • 关键词:Hemangioblast ; AGM ; Umbilical arteries ; Hematopoietic stem cells ; Endothelial cells
  • 刊名:International Journal of Hematology
  • 出版年:2012
  • 出版时间:June 2012
  • 年:2012
  • 卷:95
  • 期:6
  • 页码:632-639
  • 全文大小:733KB
  • 参考文献:1. Ferkowicz MJ, Yoder MC. Blood island formation: longstanding observations and modern interpretations. Exp Hematol. 2005;33:1041-. CrossRef
    2. Müller AM, Medvinsky A, Strouboulis J, Grosveld F, Dzierzak E. Development of hematopoietic stem cell activity in the mouse embryo. Immunity. 1994;1:291-01. CrossRef
    3. Cumano A, Godin I. Ontogeny of the hematopoietic system. Annu Rev Immunol. 2007;25:745-5. CrossRef
    4. Dzierzak E, Speck NA. Of lineage and legacy: the development of mammalian hematopoietic stem cells. Nat Immunol. 2008;9:129-6. CrossRef
    5. Boisset JC, van Cappellen W, Andrieu-Soler C, Galjart N, Dzierzak E, Robin C. In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature. 2010;464:116-0. CrossRef
    6. Zovein AC, Hofmann JJ, Lynch M, French WJ, Turlo KA, Yang Y, et al. Fate tracing reveals the endothelial origin of hematopoietic stem cells. Cell Stem Cell. 2008;3:625-6. CrossRef
    7. Chen MJ, Yokomizo T, Zeigler BM, Dzierzak E, Speck NA. Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature. 2009;457:887-1. CrossRef
    8. Eilken HM, Nishikawa S, Schroeder T. Continuous single-cell imaging of blood generation from haemogenic endothelium. Nature. 2009;457:896-00. CrossRef
    9. Keller G. Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev. 2005;19:1129-5. CrossRef
    10. Huber TL, Kouskoff V, Fehling HJ, Palis J, Keller G. Haemangioblast commitment is initiated in the primitive streak of the mouse embryo. Nature. 2004;432:625-0. CrossRef
    11. He WY, Lan Y, Yao HY, Li Z, Wang XY, Li XS, et al. Interleukin-3 promotes hemangioblast development in mouse aorta–gonad–mesonephros region. Haematologica. 2010;95:875-3. CrossRef
    12. Medvinsky A, Dzierzak E. Definitive hematopoiesis is autonomously initiated by the AGM region. Cell. 1996;86:897-06. CrossRef
    13. Gekas C, Dieterlen-Lièvre F, Orkin SH, Mikkola HK. The placenta is a niche for hematopoietic stem cells. Dev Cell. 2005;8:365-5. CrossRef
    14. Gao J, Yan XL, Li R, Liu Y, He W, Sun S, Zhang Y, Mao N, et al. Characterization of OP9 as authentic mesenchymal stem cell line. J Genet Genomics. 2010;37:475-2. CrossRef
    15. Nakano T, Kodama H, Honjo T. Generation of lymphohematopoietic cells from embryonic stem cells in culture. Science. 1994;265:1098-01. CrossRef
    16. Taoudi S, Morrison AM, Inoue H, Gribi R, Ure J, Medvinsky A. Progressive divergence of definitive haematopoietic stem cells from the endothelial compartment does not depend on contact with the foetal liver. Development. 2005;132:4179-1. CrossRef
    17. de Bruijn MF, Speck NA, Peeters MC, Dzierzak E. Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo. EMBO J. 2000;19:2465-4. CrossRef
    18. Yao H, Liu B, Wang X, Lan Y, Hou N, Yang X, et al. Identification of high proliferative potential precursors with hemangioblastic activity in the mouse aorta–gonad-mesonephros region. Stem cells. 2007;25:1423-0. CrossRef
    19. Xu MJ, Tsuji K, Ueda T, Mukouyama YS, Hara T, Yang FC, et al. Stimulation of mouse and human primitive hematopoiesis by murine embryonic aorta–gonad–mesonephros-derived stromal cell lines. Blood. 1998;92:2032-0.
    20. Matsuoka S, Tsuji K, H. Hisakawa M. Xu M, Ebihara Y, Ishii T, et al. Generation of definitive hematopoietic stem cells from murine early yolk sac and paraaortic splanchnopleures by aorta–gonad–mesonephros region-derived stromal cells. Blood. 2001; 98:6-2.
    21. Oostendorp RA, Harvey KN, Kusadasi N, de Bruijn MF, Saris C, Ploemacher RE, et al. Stromal cell lines from mouse aorta–gonads–mesonephros subregions are potent supporters of hematopoietic stem cell activity. Blood. 2002;99:1183-. CrossRef
    22. Weisel KC, Gao Y, Shieh JH, Moore MA. Stromal cell lines from the aorta–gonado-mesonephros region are potent supporters of murine and human hematopoiesis. Exp Hematol. 2006;34:1505-6. CrossRef
  • 作者单位:Weixi Niu (1) (2)
    He Huang (3)
    Liangyu Zhao (4)
    Zhuan Li (5)
    Wenyan He (5)
    Bing Liu (5)
    Longgui Li (1)
    Jiaxiang Xiong (6)

    1. Department of Cardiology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400038, China
    2. Department of Cardiology, The 309th Hospital of PLA, Beijing, 100091, China
    3. Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400038, China
    4. Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
    5. Laboratory of Oncology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, 100071, China
    6. Department of Physiology, Third Military Medical University, Chongqing, 400038, China
文摘
Hemangioblasts are the common precursors of hematopoietic and vascular cells, and are characterized as blast colony-forming cells (BL-CFCs) in vitro. We previously identified BL-CFCs in the mouse aorta–gonads–mesonephros (AGM) region, but not yolk sac, placenta, circulation, or fetal liver. Here, we aim to determine whether BL-CFCs develop in the umbilical arteries (UA) that link the dorsal aorta (sub-region of AGM) and placenta. We find that the UA cells of E11.5 mouse embryos were capable of generating typical blast colonies. On replating, these colonies produced erythroid/myeloid progenitors and B220+ B lymphocytes in vitro, corroborating their definitive hematopoietic nature. They also generated CD31+ or endomucin+ tube-like structures on OP9 stromal cells, showing their endothelial potential. The proximal and distal regions of UA had equal numbers of BL-CFCs. To evaluate whether BL-CFCs can be autonomously maintained or expanded in UA or AGM, in vitro organ culture was performed. Interestingly, the BL-CFC pool in the AGM was significantly amplified, in striking contrast to a decrease in the UA. Taken together, our findings indicate that in addition to the AGM the UA serves as an important, but less supportive, niche for hemangioblast development.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700