用户名: 密码: 验证码:
Combinatorial activities of SHORT VEGETATIVE PHASE and FLOWERING LOCUS C define distinct modes of flowering regulation in Arabidopsis
详细信息    查看全文
  • 作者:Julieta L Mateos (1) (5)
    Pedro Madrigal (2) (6) (7)
    Kenichi Tsuda (3)
    Vimal Rawat (1)
    Ren茅 Richter (1)
    Maida Romera-Branchat (1)
    Fabio Fornara (1) (4)
    Korbinian Schneeberger (1)
    Pawe艂 Krajewski (2)
    George Coupland (1)

    1. Department of Plant Developmental Biology
    ; Max Planck Institute for Plant Breeding Research ; D-50829 ; Cologne ; Germany
    5. Present address
    ; Fundaci贸n Instituto Leloir ; Instituto de Investigaciones Bioqu铆micas de Buenos Aires - CONICET ; C1405BWE ; Buenos Aires ; Argentina
    2. Department of Biometry and Bioinformatics
    ; Institute of Plant Genetics ; Polish Academy of Sciences ; 60-479 ; Pozna艅 ; Poland
    6. Present address
    ; Wellcome Trust Sanger Institute ; Wellcome Trust Genome Campus ; Hinxton ; Cambridge ; CB10 1SA ; UK
    7. Present address
    ; Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute ; Anne McLaren Laboratory for Regenerative Medicine ; Department of Surgery ; University of Cambridge ; CB2 0SZ ; Cambridge ; UK
    3. Department of Plant Microbe Interactions
    ; Max Planck Institute for Plant Breeding Research ; D-50829 ; Cologne ; Germany
    4. Department of Biosciences
    ; University of Milan ; 20133 ; Milan ; Italy
  • 刊名:Genome Biology
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:16
  • 期:1
  • 全文大小:1,993 KB
  • 参考文献:1. Andres, F, Coupland, G (2012) The genetic basis of flowering responses to seasonal cues. Nat Rev Genet. 13: pp. 627-39 CrossRef
    2. Michaels, SD (2009) Flowering time regulation produces much fruit. Curr Opin Plant Biol. 12: pp. 75-80 CrossRef
    3. Deng, W, Ying, H, Helliwell, CA, Taylor, JM, Peacock, WJ, Dennis, ES (2011) FLOWERING LOCUS C (FLC) regulates development pathways throughout the life cycle of Arabidopsis. Proc Natl Acad Sci U S A. 108: pp. 6680-5 CrossRef
    4. Gregis, V, Andres, F, Sessa, A, Guerra, RF, Simonini, S, Mateos, JL (2013) Identification of pathways directly regulated by SHORT VEGETATIVE PHASE during vegetative and reproductive development in Arabidopsis. Genome Biol. 14: pp. R56 CrossRef
    5. Immink, RG, Pose, D, Ferrario, S, Ott, F, Kaufmann, K, Valentim, FL (2012) Characterization of SOC1鈥檚 central role in flowering by the identification of its upstream and downstream regulators. Plant Physiol. 160: pp. 433-49 CrossRef
    6. Immink, RG, Tonaco, IA, Folter, S, Shchennikova, A, Dijk, AD, Busscher-Lange, J (2009) SEPALLATA3: the 鈥榞lue鈥?for MADS box transcription factor complex formation. Genome Biol. 10: pp. R24 CrossRef
    7. Kaufmann, K, Wellmer, F, Muino, JM, Ferrier, T, Wuest, SE, Kumar, V (2010) Orchestration of floral initiation by APETALA1. Science. 328: pp. 85-9 CrossRef
    8. Pose, D, Verhage, L, Ott, F, Yant, L, Mathieu, J, Angenent, GC (2013) Temperature-dependent regulation of flowering by antagonistic FLM variants. Nature. 503: pp. 414-7 CrossRef
    9. Tao, Z, Shen, L, Liu, C, Liu, L, Yan, Y, Yu, H (2012) Genome-wide identification of SOC1 and SVP targets during the floral transition in Arabidopsis. Plant J. 70: pp. 549-61 CrossRef
    10. Wuest, SE, O鈥橫aoileidigh, DS, Rae, L, Kwasniewska, K, Raganelli, A, Hanczaryk, K (2012) Molecular basis for the specification of floral organs by APETALA3 and PISTILLATA. Proc Natl Acad Sci U S A. 109: pp. 13452-7 CrossRef
    11. Gregis, V, Sessa, A, Dorca-Fornell, C, Kater, MM (2009) The Arabidopsis floral meristem identity genes AP1, AGL24 and SVP directly repress class B and C floral homeotic genes. Plant J. 60: pp. 626-37 CrossRef
    12. Li, D, Liu, C, Shen, L, Wu, Y, Chen, H, Robertson, M (2008) A repressor complex governs the integration of flowering signals in Arabidopsis. Dev Cell. 15: pp. 110-20 CrossRef
    13. Jin, J, Zhang, H, Kong, L, Gao, G, Luo, J (2013) PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Res 42: pp. D1182-7 CrossRef
    14. Gramzow, L, Theissen, G (2010) A hitchhiker鈥檚 guide to the MADS world of plants. Genome Biol. 11: pp. 214 CrossRef
    15. Hartmann, U, Hohmann, S, Nettesheim, K, Wisman, E, Saedler, H, Huijser, P (2000) Molecular cloning of SVP: a negative regulator of the floral transition in Arabidopsis. Plant J. 21: pp. 351-60 CrossRef
    16. Michaels, SD, Amasino, RM (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell. 11: pp. 949-56 CrossRef
    17. Samach, A, Onouchi, H, Gold, SE, Ditta, GS, Schwarz-Sommer, Z, Yanofsky, MF (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science. 288: pp. 1613-6 CrossRef
    18. Sheldon, CC, Burn, JE, Perez, PP, Metzger, J, Edwards, JA, Peacock, WJ (1999) The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell. 11: pp. 445-58 CrossRef
    19. Colombo, L, Franken, J, Koetje, E, Went, J, Dons, HJ, Angenent, GC (1995) The petunia MADS box gene FBP11 determines ovule identity. Plant Cell. 7: pp. 1859-68 CrossRef
    20. Kaufmann, K, Muino, JM, Jauregui, R, Airoldi, CA, Smaczniak, C, Krajewski, P (2009) Target genes of the MADS transcription factor SEPALLATA3: integration of developmental and hormonal pathways in the Arabidopsis flower. PLoS Biol. 7: pp. e1000090 CrossRef
    21. Pinyopich, A, Ditta, GS, Savidge, B, Liljegren, SJ, Baumann, E, Wisman, E (2003) Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature. 424: pp. 85-8 CrossRef
    22. Sommer, H, Beltran, JP, Huijser, P, Pape, H, Lonnig, WE, Saedler, H (1990) Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J. 9: pp. 605-13
    23. Yanofsky, MF, Ma, H, Bowman, JL, Drews, GN, Feldmann, KA, Meyerowitz, EM (1990) The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature. 346: pp. 35-9 CrossRef
    24. Theissen, G, Saedler, H (2001) Plant biology. Floral quartets. Nature. 409: pp. 469-71 CrossRef
    25. Jang, S, Torti, S, Coupland, G (2009) Genetic and spatial interactions between FT, TSF and SVP during the early stages of floral induction in Arabidopsis. Plant J. 60: pp. 614-25 CrossRef
    26. Liu, C, Zhou, J, Bracha-Drori, K, Yalovsky, S, Ito, T, Yu, H (2007) Specification of Arabidopsis floral meristem identity by repression of flowering time genes. Development. 134: pp. 1901-10 CrossRef
    27. Gregis, V, Sessa, A, Colombo, L, Kater, MM (2006) AGL24, SHORT VEGETATIVE PHASE, and APETALA1 redundantly control AGAMOUS during early stages of flower development in Arabidopsis. Plant Cell. 18: pp. 1373-82 CrossRef
    28. Liu, C, Thong, Z, Yu, H (2009) Coming into bloom: the specification of floral meristems. Development. 136: pp. 3379-91 CrossRef
    29. Lee, JH, Ryu, HS, Chung, KS, Pose, D, Kim, S, Schmid, M (2013) Regulation of temperature-responsive flowering by MADS-box transcription factor repressors. Science. 342: pp. 628-32 CrossRef
    30. Lee, JH, Yoo, SJ, Park, SH, Hwang, I, Lee, JS, Ahn, JH (2007) Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes Dev. 21: pp. 397-402 CrossRef
    31. Searle, I, He, Y, Turck, F, Vincent, C, Fornara, F, Krober, S (2006) The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev. 20: pp. 898-912 CrossRef
    32. Andres, F, Porri, A, Torti, S, Mateos, J, Romera-Branchat, M, Garcia-Martinez, JL (2014) SHORT VEGETATIVE PHASE reduces gibberellin biosynthesis at the Arabidopsis shoot apex to regulate the floral transition. Proc Natl Acad Sci U S A. 111: pp. E2760-9 CrossRef
    33. Fujiwara, S, Oda, A, Yoshida, R, Niinuma, K, Miyata, K, Tomozoe, Y (2008) Circadian clock proteins LHY and CCA1 regulate SVP protein accumulation to control flowering in Arabidopsis. Plant Cell. 20: pp. 2960-71 CrossRef
    34. Helliwell, CA, Wood, CC, Robertson, M, James Peacock, W, Dennis, ES (2006) The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecular-weight protein complex. Plant J. 46: pp. 183-92 CrossRef
    35. Folter, S, Immink, RG, Kieffer, M, Parenicova, L, Henz, SR, Weigel, D (2005) Comprehensive interaction map of the Arabidopsis MADS Box transcription factors. Plant Cell. 17: pp. 1424-33 CrossRef
    36. Gu, X, Le, C, Wang, Y, Li, Z, Jiang, D, Wang, Y (2013) Arabidopsis FLC clade members form flowering-repressor complexes coordinating responses to endogenous and environmental cues. Nat Commun. 4: pp. 1947
    37. Gregis, V, Sessa, A, Colombo, L, Kater, MM (2008) AGAMOUS-LIKE24 and SHORT VEGETATIVE PHASE determine floral meristem identity in Arabidopsis. Plant J. 56: pp. 891-902 CrossRef
    38. Johanson, U, West, J, Lister, C, Michaels, S, Amasino, R, Dean, C (2000) Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science. 290: pp. 344-7 CrossRef
    39. Torti, S, Fornara, F, Vincent, C, Andres, F, Nordstrom, K, Gobel, U (2012) Analysis of the Arabidopsis shoot meristem transcriptome during floral transition identifies distinct regulatory patterns and a leucine-rich repeat protein that promotes flowering. Plant Cell. 24: pp. 444-62 CrossRef
    40. Tsuda, K, Mine, A, Bethke, G, Igarashi, D, Botanga, CJ, Tsuda, Y (2013) Dual regulation of gene expression mediated by extended MAPK activation and salicylic acid contributes to robust innate immunity in Arabidopsis thaliana. PLoS Genet. 9: pp. e1004015 CrossRef
    41. Tsuda, K, Sato, M, Stoddard, T, Glazebrook, J, Katagiri, F (2009) Network properties of robust immunity in plants. PLoS Genet. 5: pp. e1000772 CrossRef
    42. Wen, J, Lease, KA, Walker, JC (2004) DVL, a novel class of small polypeptides: overexpression alters Arabidopsis development. Plant J. 37: pp. 668-77 CrossRef
    43. Danisman, S, Wal, F, Dhondt, S, Waites, R, Folter, S, Bimbo, A (2012) Arabidopsis class I and class II TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically. Plant Physiol. 159: pp. 1511-23 CrossRef
    44. Willmann, MR, Poethig, RS (2011) The effect of the floral repressor FLC on the timing and progression of vegetative phase change in Arabidopsis. Development. 138: pp. 677-85 CrossRef
    45. Wellmer, F, Alves-Ferreira, M, Dubois, A, Riechmann, JL, Meyerowitz, EM (2006) Genome-wide analysis of gene expression during early Arabidopsis flower development. PLoS Genet. 2: pp. e117 CrossRef
    46. Chini, A, Fonseca, S, Fernandez, G, Adie, B, Chico, JM, Lorenzo, O (2007) The JAZ family of repressors is the missing link in jasmonate signalling. Nature. 448: pp. 666-71 CrossRef
    47. Thines, B, Katsir, L, Melotto, M, Niu, Y, Mandaokar, A, Liu, G (2007) JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature. 448: pp. 661-5 CrossRef
    48. Maruyama, K, Takeda, M, Kidokoro, S, Yamada, K, Sakuma, Y, Urano, K (2009) Metabolic pathways involved in cold acclimation identified by integrated analysis of metabolites and transcripts regulated by DREB1A and DREB2A. Plant Physiol. 150: pp. 1972-80 CrossRef
    49. Sheldon, CC, Rouse, DT, Finnegan, EJ, Peacock, WJ, Dennis, ES (2000) The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). Proc Natl Acad Sci U S A. 97: pp. 3753-8 CrossRef
    50. Bailey, T, Krajewski, P, Ladunga, I, Lefebvre, C, Li, Q, Liu, T (2013) Practical guidelines for the comprehensive analysis of ChIP-seq data. PLoS Comput Biol. 9: pp. e1003326 CrossRef
    51. Madrigal P, Krajewski P. NarrowPeaks: Shape-based Analysis of Variation in ChIP-Seq using Functional PCA. R package version 1.9.4. 2013. [http://www.bioconductor.org/].
    52. Bardet, AF, He, Q, Zeitlinger, J, Stark, A (2012) A computational pipeline for comparative ChIP-seq analyses. Nat Protoc. 7: pp. 45-61 CrossRef
    53. Bailey, TL, Elkan, C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol. 2: pp. 28-36
    54. Mui帽o, JM, Smaczniak, C, Angenent, GC, Kaufmann, K, Dijk, ADJ (2013) Structural determinants of DNA recognition by plant MADS-domain transcription factors. Nucleic Acids Res. 42: pp. 2138-46 CrossRef
    55. Tang, W, Perry, SE (2003) Binding site selection for the plant MADS domain protein AGL15: an in vitro and in vivo study. J Biol Chem. 278: pp. 28154-9 CrossRef
    56. West, AG, Causier, BE, Davies, B, Sharrocks, AD (1998) DNA binding and dimerisation determinants of Antirrhinum majus MADS-box transcription factors. Nucleic Acids Res. 26: pp. 5277-87 CrossRef
    57. Pajoro, A, Madrigal, P, Muino, JM, Matus, JT, Jin, J, Mecchia, MA (2014) Dynamics of chromatin accessibility and gene regulation by MADS-domain transcription factors in flower development. Genome Biol. 15: pp. R41 CrossRef
    58. Huang, W, Sherman, BT, Lempicki, RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 4: pp. 44-57 CrossRef
    59. Hu, JY, Zhou, Y, He, F, Dong, X, Liu, LY, Coupland, G (2014) Turck F, de Meaux J: miR824-Regulated AGAMOUS-LIKE16 contributes to flowering time repression in Arabidopsis. Plant Cell. 26: pp. 2024-37 CrossRef
    60. Castillejo, C, Pelaz, S (2008) The balance between CONSTANS and TEMPRANILLO activities determines FT expression to trigger flowering. Curr Biol. 18: pp. 1338-43 CrossRef
    61. Osnato, M, Castillejo, C, Matias-Hernandez, L, Pelaz, S (2012) TEMPRANILLO genes link photoperiod and gibberellin pathways to control flowering in Arabidopsis. Nat Commun. 3: pp. 808 CrossRef
    62. Magome, H, Yamaguchi, S, Hanada, A, Kamiya, Y, Oda, K (2008) The DDF1 transcriptional activator upregulates expression of a gibberellin-deactivating gene, GA2ox7, under high-salinity stress in Arabidopsis. Plant J. 56: pp. 613-26 CrossRef
    63. Schomburg, FM, Bizzell, CM, Lee, DJ, Zeevaart, JA, Amasino, RM (2003) Overexpression of a novel class of gibberellin 2-oxidases decreases gibberellin levels and creates dwarf plants. Plant Cell. 15: pp. 151-63 CrossRef
    64. Harberd, NP, Belfield, E, Yasumura, Y (2009) The angiosperm gibberellin-GID1-DELLA growth regulatory mechanism: how an 鈥渋nhibitor of an inhibitor鈥?enables flexible response to fluctuating environments. Plant Cell. 21: pp. 1328-39 CrossRef
    65. Liu, C, Xi, W, Shen, L, Tan, C, Yu, H (2009) Regulation of floral patterning by flowering time genes. Dev Cell. 16: pp. 711-22 CrossRef
    66. Smaczniak, C, Immink, RG, Muino, JM, Blanvillain, R, Busscher, M, Busscher-Lange, J (2012) Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development. Proc Natl Acad Sci U S A. 109: pp. 1560-5 CrossRef
    67. Wilson, RN, Heckman, JW, Somerville, CR (1992) Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiol. 100: pp. 403-8 CrossRef
    68. Galvao, VC, Horrer, D, Kuttner, F, Schmid, M (2012) Spatial control of flowering by DELLA proteins in Arabidopsis thaliana. Development. 139: pp. 4072-82 CrossRef
    69. Griffiths, J, Murase, K, Rieu, I, Zentella, R, Zhang, ZL, Powers, SJ (2006) Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell. 18: pp. 3399-414 CrossRef
    70. Porri, A, Torti, S, Romera-Branchat, M, Coupland, G (2012) Spatially distinct regulatory roles for gibberellins in the promotion of flowering of Arabidopsis under long photoperiods. Development. 139: pp. 2198-209 CrossRef
    71. Willige, BC, Ghosh, S, Nill, C, Zourelidou, M, Dohmann, EM, Maier, A (2007) The DELLA domain of GA INSENSITIVE mediates the interaction with the GA INSENSITIVE DWARF1A gibberellin receptor of Arabidopsis. Plant Cell. 19: pp. 1209-20 CrossRef
    72. Sakamoto, T, Kobayashi, M, Itoh, H, Tagiri, A, Kayano, T, Tanaka, H (2001) Expression of a gibberellin 2-oxidase gene around the shoot apex is related to phase transition in rice. Plant Physiol. 125: pp. 1508-16 CrossRef
    73. Jasinski, S, Piazza, P, Craft, J, Hay, A, Woolley, L, Rieu, I (2005) KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Curr Biol. 15: pp. 1560-5 CrossRef
    74. Wellmer, F, Bowman, JL, Davies, B, Ferrandiz, C, Fletcher, JC, Franks, RG (2014) Flower development: open questions and future directions. Methods Mol Biol. 1110: pp. 103-24 CrossRef
    75. Edelman, GM, Gally, JA (2001) Degeneracy and complexity in biological systems. Proc Natl Acad Sci U S A. 98: pp. 13763-8 CrossRef
    76. Whitacre, J, Bender, A (2010) Degeneracy: a design principle for achieving robustness and evolvability. J Theor Biol. 263: pp. 143-53 CrossRef
    77. Mendez-Vigo, B, Martinez-Zapater, JM, Alonso-Blanco, C (2013) The flowering repressor SVP underlies a novel Arabidopsis thaliana QTL interacting with the genetic background. PLoS Genet. 9: pp. e1003289 CrossRef
    78. Ruelens, P, Maagd, RA, Proost, S, Theissen, G, Geuten, K, Kaufmann, K (2013) FLOWERING LOCUS C in monocots and the tandem origin of angiosperm-specific MADS-box genes. Nat Commun. 4: pp. 2280 CrossRef
    79. Lee, I, Amasino, RM (1995) Effect of vernalization, photoperiod, and light quality on the flowering phenotype of Arabidopsis plants containing the FRIGIDA gene. Plant Physiol. 108: pp. 157-62
    80. Rehrauer, H, Aquino, C, Gruissem, W, Henz, SR, Hilson, P, Laubinger, S (2010) AGRONOMICS1: a new resource for Arabidopsis transcriptome profiling. Plant Physiol. 152: pp. 487-99 CrossRef
    81. Irizarry, RA, Bolstad, BM, Collin, F, Cope, LM, Hobbs, B, Speed, TP (2003) Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 31: pp. e15 CrossRef
    82. Hoon, MJ, Imoto, S, Nolan, J, Miyano, S (2004) Open source clustering software. Bioinformatics. 20: pp. 1453-4 CrossRef
    83. Eisen, MB, Spellman, PT, Brown, PO, Botstein, D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A. 95: pp. 14863-8 CrossRef
    84. Gendrel, AV, Lippman, Z, Yordan, C, Colot, V, Martienssen, RA (2002) Dependence of heterochromatic histone H3 methylation patterns on the Arabidopsis gene DDM1. Science. 297: pp. 1871-3 CrossRef
    85. Zhou, Q, Su, X, Wang, A, Xu, J, Ning, K (2013) QC-Chain: fast and holistic quality control method for next-generation sequencing data. PLoS One. 8: pp. e60234 CrossRef
    86. Langmead, B, Trapnell, C, Pop, M, Salzberg, SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10: pp. R25 CrossRef
    87. Feng, J, Liu, T, Qin, B, Zhang, Y, Liu, XS (2012) Identifying ChIP-seq enrichment using MACS. Nat Protoc. 7: pp. 1728-40 CrossRef
    88. Li, Q, Brown, J, Huang, H, Bickel, P (2011) Measuring reproducibility of high-throughput experiments. Ann Appl Stat. 5: pp. 1752-79 CrossRef
    89. Muino, JM, Kaufmann, K, Ham, RC, Angenent, GC, Krajewski, P (2011) ChIP-seq Analysis in R (CSAR): An R package for the statistical detection of protein-bound genomic regions. Plant Methods. 7: pp. 11 CrossRef
    90. Zhu, LJ, Gazin, C, Lawson, ND, Pages, H, Lin, SM, Lapointe, DS (2010) ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip data. BMC Bioinformatics. 11: pp. 237 CrossRef
    91. Benjamini, Y, Hochberg, Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 57: pp. 289-300
    92. Ramirez, F, Dundar, F, Diehl, S, Gruning, BA, Manke, T (2014) deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 42: pp. W187-91 CrossRef
    93. Thorvaldsdottir, H, Robinson, JT, Mesirov, JP (2013) Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 14: pp. 178-92 CrossRef
    94. Huang, W, Sherman, BT, Lempicki, RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37: pp. 1-13 CrossRef
    95. Gupta, S, Stamatoyannopoulos, JA, Bailey, TL, Noble, WS (2007) Quantifying similarity between motifs. Genome Biol. 8: pp. R24 CrossRef
    96. Korhonen, J, Martinmaki, P, Pizzi, C, Rastas, P, Ukkonen, E (2009) MOODS: fast search for position weight matrix matches in DNA sequences. Bioinformatics. 25: pp. 3181-2 CrossRef
  • 刊物主题:Animal Genetics and Genomics; Human Genetics; Plant Genetics & Genomics; Microbial Genetics and Genomics; Fungus Genetics; Bioinformatics;
  • 出版者:BioMed Central
  • ISSN:1465-6906
文摘
Background The initiation of flowering is an important developmental transition as it marks the beginning of the reproductive phase in plants. The MADS-box transcription factors (TFs) FLOWERING LOCUS C (FLC) and SHORT VEGETATIVE PHASE (SVP) form a complex to repress the expression of genes that initiate flowering in Arabidopsis. Both TFs play a central role in the regulatory network by conferring seasonal patterns of flowering. However, their interdependence and biological relevance when acting as a complex have not been extensively studied. Results We characterized the effects of both TFs individually and as a complex on flowering initiation using transcriptome profiling and DNA-binding occupancy. We find four major clusters regulating transcriptional responses, and that DNA binding scenarios are highly affected by the presence of the cognate partner. Remarkably, we identify genes whose regulation depends exclusively on simultaneous action of both proteins, thus distinguishing between the specificity of the SVP:FLC complex and that of each TF acting individually. The downstream targets of the SVP:FLC complex include a higher proportion of genes regulating floral induction, whereas those bound by either TF independently are biased towards floral development. Many genes involved in gibberellin-related processes are bound by the SVP:FLC complex, suggesting that direct regulation of gibberellin metabolism by FLC and SVP contributes to their effects on flowering. Conclusions The regulatory codes controlled by SVP and FLC were deciphered at the genome-wide level revealing substantial flexibility based on dependent and independent DNA binding that may contribute to variation and robustness in the regulation of flowering.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700