用户名: 密码: 验证码:
Binary Interactions of Antagonistic Bacteria with Candida albicans Under Aerobic and Anaerobic Conditions
详细信息    查看全文
  • 作者:Eliska Benadé ; Wendy Stone ; Marnel Mouton ; Ferdinand Postma…
  • 关键词:Candida albicans ; Aerobic ; Anaerobic ; Bacteria ; Hydrolytic enzymes ; Prodigiosin
  • 刊名:Microbial Ecology
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:71
  • 期:3
  • 页码:645-659
  • 全文大小:808 KB
  • 参考文献:1.Aguilar-Uscanga B, Francois JM (2003) A study of the yeast cell wall composition and structure in response to growth conditions and mode of cultivation. Lett Appl Microbiol 37:268–274CrossRef PubMed
    2.Ahmadi K, Yazdi MT, Najafi MF, Shahverdi AR, Faramarzi MA, Zarrini G, Behravan J (2008) Isolation and characterization of a chitionolytic enzyme producing microorganism, Paenibacillus chitinolyticus JK2 from Iran. Research J of Microbiol 3:395–404CrossRef
    3.Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRef PubMed
    4.Atlas RM (1993) Handbook of microbiological media. CRC Press, Boca Raton, FL
    5.Azam F, Malfatti F (2007) Microbial structuring of marine ecosystems. Nature Rev Microbiol 5:782–791CrossRef
    6.Bao-qin H, Chang-ying YU, Wan-shun LIU, Ji-xun DAI (2004) Purification and inhibition fungal growth of chitinases from Vibrio pacini. Wuhan Univ J Nat Sci 9:973–978CrossRef
    7.Bernhardt H, Wellmer A, Zimmermann K, Knoke M (1995) Growth of Candida albicans in normal and altered faecal flora in the model of continuous flow culture. Mycoses 38:265–270CrossRef PubMed
    8.Boon C, Deng Y, Wang LH, He Y, Xu JL, Fan Y, Pan SQ, Zhang LH (2008) A novel DSF-like signal from Burkholderia cenocepacia interferes with Candida albicans morphological transition. ISME J 2:27–36CrossRef PubMed
    9.Britz TJ, Sigge GO, Huisamen N, Kikine T, Ackermann A, Lötter M, Lamprecht C, Kidd M (2013) Fluctuations of indicator and index microbes as indication of pollution over three years in the Plankenburg and Eerste Rivers, Western Cape, South Africa. Water SA 39:457–466
    10.Braun PC, Calderone RA (1978) Chitin synthesis in Candida albicans: comparison of yeast and hyphal forms. J of Bacteriol 133:1472–1477
    11.Brzezinska MS, Jankiewicz U, Burkowska A, Walczak M (2014) Chitinolytic microorganisms and their possible application in environmental protection. Curr Microbiol 68:71–81CrossRef
    12.Buck JD (1977) Comparison of in situ and in vitro survival of Candida albicans in seawater. Microb Ecol 4:291–302CrossRef PubMed
    13.Buckley HR, Van Uben N (1963) The identification of Candida albicans within two hours by the use of an egg white slide preparation. Sabouraudia 2:205–209CrossRef
    14.Budavari S, O’neil MJ, Smith A, Heckelman PE, Kinneary JF (1996) The merck index: an encyclopedia of chemicals, drug, and biologicals, 12th edn. Merck & Co. Inc, Whitehouse Station, p 1334, 7948
    15.Bulawa CE, Slater M, Cabib E, Au-Young J, Sburlati A, Adair WL, Robbins P (1986) The S. cerevisiae structural gene for chitin synthase is not required for chitin synthesis in vivo. Cell 46:213–225CrossRef PubMed
    16.Cabib E, Bowers B (1971) Chitin and yeast budding. Localization of chitin in yeast bud scars. J Biol Chem 246:152–159PubMed
    17.Castro C, Ribas JC, Valdivieso MH, Varona R, del Rey F, Durán A (1995) Papulacandin B resistance in budding and fission yeasts: isolation and characterization of a gene involved in (1,3)b-D-glucan synthesis in Saccharomyces cerevisiae. J Bacteriol 177:5732–5739PubMed PubMedCentral
    18.Chang S, Sanada M, Johdo O, Ohta S, Nagamatsu Y, Yoshimoto A (2000) High production of prodigiosin by Serratia marcescens grown on ethanol. Biotechnol Lett 22:1761–1765CrossRef
    19.Chattaway FW, Holmes MR, Barlow AJE (1968) Cell wall composition of the mycelial and blastospore forms of Candida albicans. J of Gen Microbiol 51:367–376CrossRef
    20.Chester R, Jr C (2011) Yeasts pathogenic to humans. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, 5th edn. Elsevier Science, Amsterdam, The Netherlands, pp 9–19
    21.Cook WL, Schlitzer RL (1981) Isolation of Candida albicans from freshwater and sewage. Appl Environ Microbiol 41:840–842PubMed PubMedCentral
    22.Cooke HJ, Phaff HJ, Miller MW, Shifrine M, Knapp EP (1960) Yeasts in polluted water and sewage. Mycologia 52:210–230CrossRef
    23.Cuskin F, Lowe EC, Temple MJ, Zhu Y, Cameron EA, Pudlo NA, Porter NT, Urs K, Thompson AJ, Cartmell A, Rogowski A, Hamilton BS, Chen R, Tolbert TJ, Piens K, Bracke D, Vervecken W, Hakki Z, Speciale G, Munoz-Munoz JL, Day A, Pena MJ, McLean R, Suits MD, Boraston AB, Atherly T, Ziemer CJ, Williams SJ, Davies GJ, Abbott DW, Martens EC, Gilbert HJ (2015) Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism. Nature 517:165–169CrossRef PubMed
    24.Dahiya N, Tewari R, Tiwari RP, Hoondal GS (2005) Production of an antifungal chitinase from Enterobacter sp. NRG4 and its application in protoplast production. World J Microbiol Biotechnol 21:1611–1616CrossRef
    25.De Boer W, Folman LB, Summerbell RC, Boddy L (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol 29:795–811CrossRef
    26.Dhawan S, Kaur J (2007) Microbial mannanases: an overview of production and applications. Crit Rev Biotechnol 27:197–216CrossRef PubMed
    27.Fell JW, Boekhout T, Fonseca A, Scorzetti G, Statzell-Tallman A (2000) Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. Int J Syst Evol Microbiol 50:1351–1371CrossRef PubMed
    28.Gacto M, Vicente‐Soler J, Cansado J, Villa TG (2000) Characterization of an extracellular enzyme system produced by Micromonospora chalcea with lytic activity on yeast cells. J Appl Microbiol 88:961–967CrossRef PubMed
    29.Giri AV, Anandkumar N, Muthukumaran G, Pennathur G (2004) A novel medium for the enhanced cell growth and production of prodigiosin from Serratia marcescens isolated from soil. BMC Microbiol 4:11CrossRef PubMed PubMedCentral
    30.Gow NAR, van de Veerdonk FL, Brown AJ, Netea MG (2012) Candida albicans morphogenesis and host defence: discriminating invasion from colonization. Nat Rev Microbiol 10:112–122
    31.Gow NAR, Hube B (2012) Importance of the Candida albicans cell wall during commensalism and infection. Curr Opin Microbiol 15:1–7CrossRef
    32.Guinea J (2014) Global trends in the distribution of Candida species causing candidemia. Clin Microbiol Infect 20(Suppl 6):5–10CrossRef
    33.Halder SK, Maity CH, Jana A, Das A, Paul T, Mohapatra PKD, Pati BR, Mondal KCH (2013) Proficient biodegradation of shrimp shell waste by Aeromonas hydrophila SBK1 for the concomitant production of antifungal chitinase and antioxidant chitosaccharides. Int Biodet Biodeg 79:88–97CrossRef
    34.Han MJ, Lee S (2006) The Escherichia coli proteome: past, present, and future prospects. Microbiol Mol Biol Rev 70:362–439CrossRef PubMed PubMedCentral
    35.Han Y, Yang B, Zhang F, Miao X, Li Z (2009) Characterization of antifungal chitinase from marine Streptomyces sp. DA11 associated with South China Sea sponge Craniella australiensis. Mar Biotechnol 11:132–140CrossRef PubMed
    36.He G, Shankar RA, Chzhan M, Samouilov A, Kuppusamy P, Zweier JL (1999) Noninvasive measurement of anatomic structure and intraluminal oxygenation in the gastrointestinal tract of living mice with spatial and spectral EPR imaging. Proc Natl Acad Sci U S A 96:4586e4591
    37.Hogan DA, Kolter R (2002) Pseudomonas-Candida interactions: an ecological role for virulence factors. Science 296:2229–2232CrossRef PubMed
    38.Howard SP, Buckley JT (1982) Membrane glycoprotein receptor and hole-forming properties of a cytolytic protein toxin. Biochem 21:1662–1667CrossRef
    39.Jadhav M, Kagalkar A, Jadhav S, Govindwar S (2011) Isolation, characterization, and antifungal application of a biosurfactant produced by Enterobacter sp. MS16. Eur J Lipid Sci Technol 113:1347–1356CrossRef
    40.Kennedy MJ, Volz PA, Edwards CA, Yancey RJ (1987) Mechanisms of association of Candida albicans with intestinal mucosa. J Med Microbiol 24:333–341CrossRef PubMed
    41.Khanafari A, Assadi MM, Fakhr FA (2006) Review of prodigiosin, pigmentation in Serratia marcescens. Online J Biol Sci 6:1–13
    42.Landy M, Warren GH, Roseman SB, Colio LG (1948) Bacillomycin: an antibiotic from Bacillus subtilis active against pathogenic fungi. Proc Soc Exp Biol Med 67:539–541CrossRef PubMed
    43.Lee KL, Buckley HR, Campbell CC (1975) An amino acid liquid synthetic medium for the development of mycellal and yeast forms of Candida albicans. Med Mycol 13:148–153CrossRef
    44.Long HS, Stander MA, Van Wyk BE (2012) Notes on the occurrence and significance of triterpenoids (asiaticoside and related compounds) and caffeoylquinic acids in Centella species. S Afr J Bot 82:53–59CrossRef
    45.Lorito M, Peterbauer C, Hayes CK, Harman GE (1994) Synergistic interaction between fungal cell wall degrading enzymes and different antifungal compounds enhances inhibition of spore germination. Microbiol 140:623–629CrossRef
    46.Macagnan D, Romeiro RS, De Souza JT, Pomella AWV (2006) Isolation of actinomycetes and endospore-forming bacteria from the cacao pod surface and their antagonistic activity against the witches’ broom and black pod pathogens. Phytoparasitica 43:122–132CrossRef
    47.Maruyama Y, Nakajima T, Ichishima E (1994) A 1, 2-α-D-mannosidase from a Bacillus sp.: purification, characterization, and mode of action. Carbohydr Res 251:89–98CrossRef PubMed
    48.Moran G, Coleman D, Sullivan D (2012) An introduction to the medically important Candida species. In: Calderone RA, Clancy CJ (eds) Candida and candidiasis, 2nd edn. ASM Press, Washington, DC, pp 11–25CrossRef
    49.Nobile CJ, Bruno VM, Richard ML, Davis DA, Mitchell AP (2003) Genetic control of chlamydospore formation in Candida albicans. Microbiol 149:3629–3637CrossRef
    50.Nucci M, Anaissie E (2001) Revisiting the source of candidemia: skin or gut? Clin infec dis 33:1959–1967CrossRef
    51.Pappas PG, Rex JH, Lee J, Hamill RJ, Larsen RA, Powderly W, Kauffman CA, Hyslop N, Mangino JE, Chapman S, Horowitz HW, Edwards JE, Dismukes WE (2003) A prospective observational study of candidemia: epidemiology, therapy, and influences on mortality in hospitalized adult and pediatric patients. Clin Infect Dis 37:634–643CrossRef PubMed
    52.Paulse AN, Jackson VA, Khan W (2009) Comparison of microbial contamination at various sites along the Plankenburg- and Diep Rivers, Western Cape, South Africa. Water SA 35:469–478
    53.Peleg AY, Tampakakis E, Fuchs BB, Eliopoulos GM, Moellering RC Jr, Mylonakis E (2008) Prokaryote-eukaryote interactions identified by using Caenorhabditis elegans. Proc Natl Acad Sci U S A 105:14585–14590CrossRef PubMed PubMedCentral
    54.Pfaller MA, Diekema DJ (2007) Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 20:133–163CrossRef PubMed PubMedCentral
    55.Prescott LM, Harley JP, Klein DA (2008) Microbiology, 7th edn. McGraw-Hill, New York
    56.Roberts WK, Selitrennikoff CP (1988) Plant and bacterial chitinases differ in antifungal activity. J of Gen Microbiol 134:169–176
    57.Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer L, Fernie AR (2001) Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13:11–29CrossRef PubMed PubMedCentral
    58.Roongsawang N, Thaniyavarn J, Thaniyavarn S, Kameyama T, Haruki M, Imanaka T, Morikawa M, Kanaya S (2002) Isolation and characterization of a halotolerant Bacillus subtilis BBK-1 which produces three kinds of lipopeptides: bacillomycin L, plipastatin, and surfactin. Extremophiles 6:499–506CrossRef PubMed
    59.Ruiz‐Herrera J, Victoria Elorza M, Valentín E, Sentandreu R (2006) Molecular organization of the cell wall of Candida albicans and its relation to pathogenicity. FEMS Yeast Res 6:14–29CrossRef PubMed
    60.Salmon K, Hung SP, Mekjian K, Baldi P, Hatfield GW, Gunsalus RP (2003) Global gene expression profiling in Escherichia coli K12: the effects of oxygen availability and FNR. J Biol Chem 278:29837–29855CrossRef PubMed
    61.Shapiro RS, Uppuluri P, Zaas AK, Collins C, Senn H, Perfect JR, Heitman J, Cowen LE (2009) Hsp90 orchestrates temperature-dependent Candida albicans morphogenesis via Ras1-PKA signaling. Curr Biol 19:621–629CrossRef PubMed PubMedCentral
    62.Shternshis MV, Beljaev AA, Shpatova TV, Duzhak AB, Panfilova ZI (2006) The effect of chitinase on Didymella applanata, the causal agent of raspberry cane spur light. BioControl 51:311–322CrossRef
    63.Someya N, Nakajima M, Hirayae K, Hibi T, Akutsu K (2001) Synergistic antifungal activity of chitinolytic enzymes and prodigiosin produced by the biocontrol bacterium Serratia marcescens strain B2 against the gray mold pathogen, Botrytis cinerea. J Gen Plant Pathol 67:312–317CrossRef
    64.Someya N, Nakajima M, Watanabe K, Akutsu K (2005) Synergistic antifungal activity of the culture filtrates of Serratia marcescens strain B2 and chemical fungicides against the sclerotial viability of the rice sheath blight pathogen, Rhizoctonia solani. Biocontrol Sci 10:97–100CrossRef
    65.Someya N, Tsuchiya K, Yoshida T, Noguchi MT, Akutsu K, Sawada H (2007) Co-inoculation of an antibiotic-producing bacterium and a lytic enzyme-producing bacterium for the biocontrol of tomato wilt caused by Fusarium oxysporum f. sp. lycopersici. Biocontrol Sci 12:1–6CrossRef PubMed
    66.Stone W, Jones B, Wilsenach J, Botha A (2012) External ecological niche for Candida albicans within reducing, oxygen-limited zones of wetlands. Appl Environ Microbiol 78:2443CrossRef PubMed PubMedCentral
    67.Swinburne TR, Barr JG, Brown AE (1975) Production of antibiotics by Bacillus subtilis and their effect on fungal colonists of apple leaf scars. Trans Br Mycol Soc 65:211–217CrossRef
    68.Takegawa K, Miki S, Jikibara T, Iwahara S (1989) Purification and characterization of exo-α-d-mannosidase from a Cellulomonas sp. Biochim Biophys Acta: General Subjects 991:431–437CrossRef
    69.Tampakakis E, Peleg AY, Mylonakis E (2009) The interaction of Candida albicans with an intestinal pathogen; Salmonella enterica serovar Typhimurium. Eukaryot Cell 8:732–737CrossRef PubMed PubMedCentral
    70.Tanaka H, Phaff HJ (1965) Enzymatic hydrolysis of yeast cell walls I. Isolation of wall-decomposing organisms and separation and purification of lytic enzymes. J Bacteriol 89:1570–1580PubMed PubMedCentral
    71.Vylkova S, Carman AJ, Danhof HA, Collette JR, Zhou H, Lorenz MC (2011) The fungal pathogen Candida albicans autoinduces hyphal morphogenesis by raising extracellular pH. MBio 2:e00055–11CrossRef PubMed PubMedCentral
    72.Wang L, He Y, Gao Y, Wu JE, Dong Y, He C, Wang SX, Weng L, Xu J, Tay L, Fang RX, Zhang L (2004) A bacterial cell-cell communication signal with cross-kingdom structural analogues. Mol Microbiol 51:903–912CrossRef PubMed
    73.Weber A, Kogl SA, Jung K (2006) Time-dependent proteome alterations under osmotic stress during aerobic and anaerobic growth in Escherichia coli. J Bacteriol 188:7165–7175CrossRef PubMed PubMedCentral
    74.White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innes MA, Gelfand DH, Sninsky JJ, Whites TJ (eds) PCR protocols. Academic, San Diego, pp 315–322
    75.Williams RP, Gott CL, Qadri SMH, Scott RH (1971) Influence of temperature of incubation and type of growth medium on pigmentation in Serratia marcescens. J Bacteriol 106:438–443PubMed PubMedCentral
    76.Williamson N, Fineran P, Leeper F, Salmond G (2006) The biosynthesis and regulation of bacterial prodiginines. Nat Rev Microbiol 4:887–899CrossRef PubMed
    77.Wilson D, Mayer F, Hube B (2012) Gene expression during the distinct stages of candidiasis. In: Calderone RA, Clancy CJ (eds) Candida and candidiasis, 2nd edn. ASM Press, Washington, DC, pp 283–298CrossRef
    78.Yamamoto S, Nagasaki S (1975) Purification and characterization of an exo α-1, 2-mannanase from Flavobacterium dormitator var. glucanolyticae. Agr Biol Chem 39:1981–1989CrossRef
  • 作者单位:Eliska Benadé (1)
    Wendy Stone (1) (2)
    Marnel Mouton (1) (3)
    Ferdinand Postma (1)
    Jac Wilsenach (4)
    Alfred Botha (1)

    1. Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
    2. Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
    3. Department of Botany and Zoology, Stellenbosch University, Stellenbosch, Western Cape, South Africa
    4. Virtual Consulting Engineers (Pty.) Ltd., Groenkloof, South Africa
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Microbiology
    Ecology
    Geoecology and Natural Processes
    Nature Conservation
  • 出版者:Springer New York
  • ISSN:1432-184X
文摘
We used both aerobic and anaerobic liquid co-cultures, prepared with Luria Bertani broth, to study the effect of bacteria on the survival of Candida albicans in the external environment, away from an animal host. The bacteria were represented by Aeromonas hydrophila, Bacillus cereus, Bacillus subtilis, Clostridium, Enterobacter, Klebsiella pneumoniae, Kluyvera ascorbata and Serratia marcescens. Under aerobic conditions, the yeast’s growth was inhibited in the presence of bacterial growth; however, under anaerobic conditions, yeast and bacterial growth in co-cultures was similar to that observed for pure cultures. Subsequent assays revealed that the majority of bacterial strains aerobically produced extracellular hydrolytic enzymes capable of yeast cell wall hydrolysis, including chitinases and mannan-degrading enzymes. In contrast, except for the A. hydrophila strain, these enzymes were not detected in anaerobic bacterial cultures, nor was the antimicrobial compound prodigiosin found in anaerobic cultures of S. marcescens. When we suspended C. albicans cells in crude extracellular enzyme preparations from K. pneumoniae and S. marcescens, we detected no negative effect on yeast viability. However, we found that these preparations enhance the toxicity of prodigiosin towards the yeast, especially in combination with mannan-degrading enzymes. Analyses of the chitin and mannan content of yeast cell walls revealed that less chitin was produced under anaerobic than aerobic conditions; however, the levels of mannan, known for its low permeability, remained the same. The latter phenomenon, as well as reduced production of the bacterial enzymes and prodigiosin, may contribute to anaerobic growth and survival of C. albicans in the presence of bacteria.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700