用户名: 密码: 验证码:
NPAS4 Facilitates the Autophagic Clearance of Endogenous Tau in Rat Cortical Neurons
详细信息    查看全文
  • 作者:Wenhui Fan ; Yan Long ; Yujie Lai ; Xuefeng Wang…
  • 关键词:NPAS4 ; Tau ; Autophagy ; Tauopathies ; Cortical neurons
  • 刊名:Journal of Molecular Neuroscience
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:58
  • 期:4
  • 页码:401-410
  • 全文大小:701 KB
  • 参考文献:Augustinack JC, Schneider A, Mandelkow EM, Hyman BT (2002) Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer’s disease. Acta Neuropathol 103:26–35CrossRef PubMed
    Beharry C, Alaniz ME, Alonso Adel C (2013) Expression of Alzheimer-like pathological human tau induces a behavioral motor and olfactory learning deficit in Drosophila melanogaster. J Alzheimers Dis 37:539–550PubMed
    Bloodgood BL, Sharma N, Browne HA et al (2013) The activity-dependent transcription factor NPAS4 regulates domain-specific inhibition. Nature 503:121–125CrossRef PubMed PubMedCentral
    Boimel M, Grigoriadis N, Lourbopoulos A, Haber E, Abramsky O, Rosenmann H (2010) Efficacy and safety of immunization with phosphorylated tau against neurofibrillary tangles in mice. Exp Neurol 224:472–485CrossRef PubMed
    Boland B, Kumar A, Lee S, Platt FM, Wegiel J, Yu WH, Nixon RA (2008) Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer’s disease. J Neurosci 28:6926–6937CrossRef PubMed PubMedCentral
    Brown MR, Bondada V, Keller JN, Thorpe J, Geddes JW (2005) Proteasome or calpain inhibition does not alter cellular tau levels in neuroblastoma cells or primary neurons. J Alzheimers Dis 7:15–24PubMed
    Caccamo A, Magri A, Medina DX, Wisely EV, López-Aranda MF, Silva AJ, Oddo S (2013) mTor regulates tau phosphorylation and degradation: implications for Alzheimer’s disease and other tauopathies. Aging Cell 12:370–380CrossRef PubMed PubMedCentral
    Delobel P, Leroy O, Hamdane M, Sambo AV, Delacourte A, Buée L (2005) Proteasome inhibition and Tau proteolysis: an unexpected regulation. FEBS Lett 579:1–5CrossRef PubMed
    Ebert DH, Greenberg ME (2013) Activity-dependent neuronal signaling and autism spectrum disorder. Nature 493:327–337CrossRef PubMed PubMedCentral
    El Khoury NB, Gratuze M, Papon MA, Bretteville A, Planel E (2014) Insulin dysfunction and Tau pathology. Front Cell Neurosci 8:22CrossRef PubMed PubMedCentral
    Engmann O, Giese KP (2009) Crosstalk between Cdk5 and GSK3beta: implications for Alzheimer’s disease. Front Mol Neurosci 2:2CrossRef PubMed PubMedCentral
    Feuillette S, Blard O, Lecourtois M, Frébourg T, Campion D, Dumanchin C (2005) Tau is not normally degraded by the proteasome. J Neurosci Res 80:400–405CrossRef PubMed
    Georgievska B, Sandin J, Doherty J et al (2013) AZD1080, a novel GSK3 inhibitor, rescues synaptic plasticity deficits in rodent brain and exhibits peripheral target engagement in humans. J Neurochem 125:446–456CrossRef PubMed
    Gotz J, Xia D, Leinenga G, Chew YL, Nicholas H (2013) What renders tau toxic. Front Neurol 4:72CrossRef PubMed PubMedCentral
    Hester I, McKee S, Pelletier P et al (2007) Transient expression of Nxf, a bHLH-PAS transactivator induced by neuronal preconditioning, confers neuroprotection in cultured cells. Brain Res 1135:1–11CrossRef PubMed
    Himmelstein DS, Ward SM, Lancia JK, Patterson KR, Binder LI (2012) Tau as a therapeutic target in neurodegenerative disease. Pharmacol Ther 136:8e22
    Huang Y, Mucke L (2012) Alzheimer mechanisms and therapeutic strategies. Cell 148:1204–1222CrossRef PubMed PubMedCentral
    Inoue K, Rispoli J, Kaphzan H et al (2012) Macroautophagy deficiency mediates age-dependent neurodegeneration through a phospho-tau pathway. Mol Neurodegener 7:48CrossRef PubMed PubMedCentral
    Ittner L, Ke YD, Delerue F et al (2010) Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell 142:387–397CrossRef PubMed
    Jo C, Gundemir S, Pritchard S, Jin YN, Rahman I, Johnson GV (2014) Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52. Nat Commun 5:3496PubMed PubMedCentral
    Krishnamurthy PK, Deng Y, Sigurdsson EM (2011) Mechanistic studies of antibody-mediated clearance of tau aggregates using an ex vivo brain slice model. Front Psychiatry 2:59CrossRef PubMed PubMedCentral
    Kruger U, Wang Y, Kumar S, Mandelkow EM (2012) Autophagic degradation of tau in primary neurons and its enhancement by trehalose. Neurobiol Aging 33:2291–2305CrossRef PubMed
    Lei Z, Brizzee C, Johnson GV (2015) BAG3 facilitates the clearance of endogenous tau in primary neurons. Neurobiol Aging 36:241–248CrossRef PubMed PubMedCentral
    Lin Y, Bloodgood BL, Hauser JL et al (2008) Activity-dependent regulation of inhibitory synapse development by Npas4. Nature 455:1198–1204CrossRef PubMed PubMedCentral
    Luo W, Dou F, Rodina A et al (2007) Roles of heatshock protein 90 in maintaining and facilitating the neurodegenerative phenotype in tauopathies. Proc Natl Acad Sci U S A 104:9511–9516CrossRef PubMed PubMedCentral
    Miyashita A, Hatsuta H, Kikuchi M et al (2014) Genes associated with the progression of neurofibrillary tangles in Alzheimer’s disease. Transl Psychiatry 4:e396CrossRef PubMed PubMedCentral
    Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140:313–326CrossRef PubMed PubMedCentral
    Nixon RA (2006) Autophagy in neurodegenerative disease: friend, foe or turncoat? Trends Neurosci 29:528–535CrossRef PubMed
    Pruunsild P, Sepp M, Orav E, Koppel I, Timmusk T (2011) Identification of cis-Elements and transcription factors regulating neuronal activity-dependent transcription of human BDNF gene. J Neurosci 31:3295–3308CrossRef PubMed
    Quintanilla RA, Dolan PJ, Jin YN, Johnson GV (2012) Truncated tau and abeta cooperatively impair mitochondria in primary neurons. Neurobiol Aging 33(619):e25–e35PubMed
    Ramamoorthi K, Fropf R, Belfort GM et al (2011) Npas4 regulates a transcriptional program in CA3 required for contextual memory formation. Science 334:1669–1675CrossRef PubMed PubMedCentral
    Roberson ED, Scearce-Levie K, Palop JJ et al (2007) Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model. Science 316:750–754CrossRef PubMed
    Rubinsztein DC (2006) The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443:780–786CrossRef PubMed
    Schaeffer V, Lavenir I, Ozcelik S, Tolnay M, Winkler DT, Goedert M (2012) Stimulation of autophagy reduces neurodegeneration in a mouse model of human tauopathy. Brain 135:2169–2177CrossRef PubMed PubMedCentral
    Shamloo M, Soriano L, von Schack D et al (2006) Npas4, a novel helix-loop-helix PAS domain protein, is regulated in response to cerebral ischemia. Eur J Neurosci 24:2705–2720CrossRef PubMed
    Shimura H, Schwartz D, Gygi SP, Kosik KS (2004) CHIP-Hsc70 complex ubiquitinates phosphorylated tau and enhances cell survival. J Biol Chem 279:4869–4876CrossRef PubMed
    Smolek T, Madari A, Farbakova J et al (2015) Tau hyperphosphorylation in synaptosomes and neuroinflammation are associated with canine cognitive impairment. J Comp Neurol. doi:10.​1002/​cne.​23877 PubMed
    Spillantini MG, Goedert M (2013) Tau pathology and neurodegeneration. Lancet Neurol 12:609–622CrossRef PubMed
    Wakasaya Y, Kawarabayashi T, Watanabe M et al (2011) Factors responsible for neurofibrillary tangles and neuronal cell losses in tauopathy. J Neurosci Res 89:576–584CrossRef PubMed
    Wang Y, Mandelkow E (2012) Degradation of tau protein by autophagy and proteasomal pathways. Biochem Soc Trans 40:644–652CrossRef PubMed
    Wang Y, Martinez-Vicente M, Krüger U et al (2009) Tau fragmentation, aggregation and clearance: the dual role of lysosomal processing. Hum Mol Genet 18:4153–4170CrossRef PubMed PubMedCentral
    Wen Y, Yang SH, Liu R et al (2007) Cdk5 is involved in NFT-like tauopathy induced by transient cerebral ischemia in female rats. Biochim Biophys Acta 1772:473–483CrossRef PubMed
    Zhang JY, Liu SJ, Li HL, Wang JZ (2005) Microtubule-associated protein tau is a substrate of ATP/Mg(2+)-dependent proteasome protease system. J Neural Transm 112:547–555CrossRef PubMed
    Zhang SJ, Zou M, Lu L et al (2009) Nuclear calcium signaling controls expression of a large gene pool: identification of a gene program for acquired neuroprotection induced by synaptic activity. PLoS Genet 5:e1000604CrossRef PubMed PubMedCentral
  • 作者单位:Wenhui Fan (1) (2)
    Yan Long (1)
    Yujie Lai (1)
    Xuefeng Wang (1)
    Guojun Chen (1)
    Binglin Zhu (1)

    1. Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
    2. Department of Neurology, The Ninth People’s Hospital of Chongqing, 69 Jialing Road, Chongqing, 400700, China
  • 刊物主题:Neurosciences; Neurochemistry; Cell Biology; Proteomics; Neurology;
  • 出版者:Springer US
  • ISSN:1559-1166
文摘
Tau, a microtubule-binding phosphoprotein, plays a critical role in the stabilisation of microtubules and neuronal function. However, hyperphosphorylated tau is involved in the pathogenesis of Alzheimer’s disease (AD) and other tauopathies. The facilitation of tau clearance is now regarded as a valid therapeutic strategy for these neurodegenerative tauopathies. Here, we provide the first demonstration that the over-expression of neuronal PAS domain protein 4 (NPAS4)-induced autophagy and effectively facilitated the clearance of endogenous total and phosphorylated tau in rat primary cortical neurons. Moreover, the activation of autophagy by serum depletion significantly decreased endogenous total and phosphorylated tau levels. Autophagy inhibitors, such as 3-methyladenine (3-MA) and chloroquine (CQ), induced tau aggregation. However, NPAS4 over-expression reversed the aggregation of tau that was induced by the inhibition of autophagy. Interestingly, proteasome inhibition by MG132, had no effect on autophagy, but did reduce tau levels, indicating that NPAS4 may also degrade tau proteins through an unknown proteasome-mediated mechanism. Furthermore, NPAS4 did not alter the activity of two major tau kinases, glycogen synthase kinase 3β (GSK3β) and cyclin-dependent kinase 5 (CDK5). Taken together, the results indicate that targeting NPAS4 could provide a therapeutic approach for the treatment of AD and other tauopathies.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700