用户名: 密码: 验证码:
Proteomic analysis of the inhibitory effect of epigallocatechin gallate on lipid accumulation in human HepG2 cells
详细信息    查看全文
  • 作者:Zhonghua Liu (1) (2) (3)
    Qin Li (2) (3)
    Jianan Huang (2)
    Qionglin Liang (1)
    Yujun Yan (3)
    Haiyan Lin (3)
    Wenjun Xiao (3)
    Yong Lin (3)
    Sheng Zhang (3)
    Bin Tan (3)
    Guoan Luo (1)
  • 关键词:Proteomics ; (? ; Epigallocatechin ; 3 ; gallate ; HepG2 cells ; Lipid accumulation
  • 刊名:Proteome Science
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:11
  • 期:1
  • 全文大小:870KB
  • 参考文献:1. Angulo P, Lindor KD: Non-alcoholic fatty liver disease. / J Gastroenterol Hepatol 2002, 17:S186-S190. CrossRef
    2. Suzuki Y, Miyoshi N, Isemura M: Health-promoting effects of green tea. / Proc Jpn Acad Ser B Phys Biol Sci 2012, 88:88-01. CrossRef
    3. Yang CS, Landau JM: Effects of tea consumption on nutrition and health. / J Nutr 2000, 130:2409-412.
    4. Kao YH, Chang HH, Lee MJ, Chen CL: Tea, obesity, and diabetes. / Mol Nutr Food Res 2006, 50:188-10. CrossRef
    5. Wolfram S, Wang Y, Thielecke F: Anti-obesity effects of green tea: from bedside to bench. / Mol Nutr Food Res 2006, 50:176-87. CrossRef
    6. Bose M, Lambert JD, Ju J, Reuhl KR, Shapses SA, Yang CS: The major green Tea polyphenol, (?-epigallocatechin-3-gallate, inhibits obesity, metabolic syndrome, and fatty liver disease in high-Fat–Fed mice. / J Nutr 2008, 138:1677-683.
    7. Kuzu N, Bahcecioglu IH, Dagli AF, Ozercan IH, Ustündag B, Sahin K: Epigallocatechin gallate attenuates experimental non-alcoholic steatohepatitis induced by high fat diet. / J Gastroenterol Hepatol 2008, 23:e465-e470. CrossRef
    8. Chen YK, Cheung C, Reuhl KR, Liu AB, Lee MJ, Lu YP, Yang CS: Effects of green tea polyphenol (?-epigallocatechin-3-gallate on newly developed high-fat/Western-style diet-induced obesity and metabolic syndrome in mice. / J Agric Food Chem 2011, 59:11862-1871. CrossRef
    9. Klaus S, Pultz S, Thone-Reineke C, Wolfram S: Epigallocatechin gallate attenuates diet-induced obesity in mice by decreasing energy absorption and increasing fat oxidation. / Int J Obes (Lond) 2005, 29:615-23. CrossRef
    10. Tokimitsu I: Effects of tea catechins on lipid metabolism and body fat accumulation. / Biofactors 2004, 22:141-43. CrossRef
    11. Murase T, Haramizu S, Shimotoyodome A, Nagasawa A, Tokimitsu I: Green tea extract improves endurance capacity and increases muscle lipid oxidation in mice. / Am J Physiol Regul Integr Comp Physiol 2005, 288:R708-R715. CrossRef
    12. Wolfram S, Raederstorff D, Wang Y, Teixeira SR, Elste V, Weber P: TEAVIGO (epigallocatechin gallate) supplementation prevents obesity in rodents by reducing adipose tissue mass. / Ann Nutr Metab 2005, 49:54-3. CrossRef
    13. Brusselmans K, De Schrijver E, Heyns W, Verhoeven G, Swinnen JV: Epigallocatechin-3-gallate is a potent natural inhibitor of fatty acid synthase in intact cells and selectively induces apoptosis in prostate cancer cells. / Int J Cancer 2003, 106:856-62. CrossRef
    14. Yeh CW, Chen WJ, Chiang CT, Lin-Shiau SY, Lin JK: Suppression of fatty acid synthase in MCF-7 breast cancer cells by tea and tea polyphenols: a possible mechanism for their hypolipidemic effects. / Pharmacogenomics J 2003, 3:267-76.
    15. Mochizuki M, Hasegawa N: Stereospecific effects of catechin isomers on insulin induced lipogenesis in 3T3-L1 cells. / Phytother Res 2004, 18:449-50. CrossRef
    16. Araya J, Rodrigo R, Videla LA, Thielemann L, Orellana M, Pettinelli P, Poniachik J: Increase in long-chain polyunsaturated fatty acid n - 6/n - 3 ratio in relation to hepatic steatosis in patients with non-alcoholic fatty liver disease. / Clin Sci (Lond) 2004, 106:635-43. CrossRef
    17. Gómez-Lechón MJ, Donato MT, Martínez-Romero A, Jiménez N, Castell JV, O’Connor J-E: A human hepatocellular in vitro model to investigate steatosis. / Chemico-Biol Interact 2007, 165:106-16. CrossRef
    18. Gomez-Lechon MJ, Donato MT, Martinez-Romero A, Jimenez N, Castell JV, O’Connor JE: A human hepatocellular in vitro model to investigate steatosis. / Chem Biol Interact 2007, 165:106-16. CrossRef
    19. Marchesini G, Brizi M, Bianchi G, Tomassetti S, Bugianesi E, Lenzi M, McCullough AJ, Natale S, Forlani G, Melchionda N: Nonalcoholic fatty liver disease: a feature of the metabolic syndrome. / Diabetes 2001, 50:1844-850. CrossRef
    20. Musso G, Gambino R, Cassader M: Recent insights into hepatic lipid metabolism in non-alcoholic fatty liver disease (NAFLD). / Prog Lipid Res 2009, 48:1-6. CrossRef
    21. Hwang JT, Park IJ, Shin JI, Lee YK, Lee SK, Baik HW, Ha J, Park OJ: Genistein, EGCG, and capsaicin inhibit adipocyte differentiation process via activating AMP-activated protein kinase. / Biochem Biophys Res Commun 2005, 338:694-99. CrossRef
    22. Moon HS, Chung CS, Lee HG, Kim TG, Choi YJ, Cho CS: Inhibitory effect of (?-epigallocatechin-3-gallate on lipid accumulation of 3T3-L1 cells. / Obesity (Silver Spring) 2007, 15:2571-582. CrossRef
    23. Wang CT, Chang HH, Hsiao CH, Lee MJ, Ku HC, Hu YJ, Kao YH: The effects of green tea (?-epigallocatechin-3-gallate on reactive oxygen species in 3T3-L1 preadipocytes and adipocytes depend on the glutathione and 67 kDa laminin receptor pathways. / Mol Nutr Food Res 2009, 53:349-60. CrossRef
    24. Hwang J-T, Kwon DY, Yoon SH: AMP-activated protein kinase: a potential target for the diseases prevention by natural occurring polyphenols. / New Biotechnol 2009, 26:17-2. CrossRef
    25. Pak JH, Manevich Y, Kim HS, Feinstein SI, Fisher AB: An antisense oligonucleotide to 1-cys peroxiredoxin causes lipid peroxidation and apoptosis in lung epithelial cells. / J Biol Chem 2002, 277:49927-9934. CrossRef
    26. Wang Y, Feinstein SI, Fisher AB: Peroxiredoxin 6 as an antioxidant enzyme: protection of lung alveolar epithelial type II cells from H2O2-induced oxidative stress. / J Cell Biochem 2008, 104:1274-285. CrossRef
    27. Emerling BM, Weinberg F, Snyder C, Burgess Z, Mutlu GM, Viollet B, Budinger GRS, Chandel NS: Hypoxic activation of AMPK is dependent on mitochondrial ROS but independent of an increase in AMP/ATP ratio. / Free Radic Biol Med 2009, 46:1386-391. CrossRef
    28. Lin CL, Huang HC, Lin JK: Theaflavins attenuate hepatic lipid accumulation through activating AMPK in human HepG2 cells. / J Lipid Res 2007, 48:2334-343. CrossRef
    29. Carling D, Thornton C, Woods A, Sanders MJ: AMP-activated protein kinase: new regulation, new roles? / Biochem J 2012, 445:11-7. CrossRef
    30. Fediuc S, Gaidhu MP, Ceddia RB: Regulation of AMP-activated protein kinase and acetyl-CoA carboxylase phosphorylation by palmitate in skeletal muscle cells. / J Lipid Res 2006, 47:412-20. CrossRef
    31. Viollet B, Foretz M, Guigas B, Horman S, Dentin R, Bertrand L, Hue L, Andreelli F: Activation of AMP-activated protein kinase in the liver: a new strategy for the management of metabolic hepatic disorders. / J Physiol 2006, 574:41-3. CrossRef
    32. Oyedotun KS, Lemire BD: The quaternary structure of the Saccharomyces cerevisiae succinate dehydrogenase. Homology modeling, cofactor docking, and molecular dynamics simulation studies. / J Biol Chem 2004, 279:9424-431. CrossRef
    33. Rutter J, Winge DR, Schiffman JD: Succinate dehydrogenase - assembly, regulation and role in human disease. / Mitochondrion 2010, 10:393-01. CrossRef
    34. Goodpaster BH, He J, Watkins S, Kelley DE: Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes. / J Clin Endocrinol Metab 2001, 86:5755-761. CrossRef
    35. Simoneau JA, Veerkamp JH, Turcotte LP, Kelley DE: Markers of capacity to utilize fatty acids in human skeletal muscle: relation to insulin resistance and obesity and effects of weight loss. / FASEB J 1999, 13:2051-060.
    36. Sun G, Ukkola O, Rankinen T, Joanisse DR, Bouchard C: Skeletal muscle characteristics predict body fat gain in response to overfeeding in never-obese young men. / Metab Clin Exp 2002, 51:451-56. CrossRef
    37. Yechoor VK, Patti ME, Saccone R, Kahn CR: Coordinated patterns of gene expression for substrate and energy metabolism in skeletal muscle of diabetic mice. / Proc Natl Acad Sci U S A 2002, 99:10587-0592. CrossRef
    38. Kern PA, Simsolo RB, Fournier M: Effect of weight loss on muscle fiber type, fiber size, capillarity, and succinate dehydrogenase activity in humans. / J Clin Endocrinol Metab 1999, 84:4185-190. CrossRef
    39. Menshikova EV, Ritov VB, Ferrell RE, Azuma K, Goodpaster BH, Kelley DE: Characteristics of skeletal muscle mitochondrial biogenesis induced by moderate-intensity exercise and weight loss in obesity. / J Appl Physiol 2007, 103:21-7. CrossRef
    40. Stafforini DM, McIntyre TM, Zimmerman GA, Prescott SM: Platelet-activating factor acetylhydrolases. / J Biol Chem 1997, 272:17895-7898. CrossRef
    41. Tjoelker LW, Wilder C, Eberhardt C, Stafforini DM, Dietsch G, Schimpf B, Hooper S, Le Trong H, Cousens LS, Zimmerman GA, / et al.: Anti-inflammatory properties of a platelet-activating factor acetylhydrolase. / Nature 1995, 374:549-53. CrossRef
    42. Vittos O, Toana B, Vittos A, Moldoveanu E: Lipoprotein-associated phospholipase A2 (Lp-PLA2): a review of its role and significance as a cardiovascular biomarker. / Biomarkers 2012, 17:289-02. CrossRef
    43. Zimmerman GA, McIntyre TM, Prescott SM, Stafforini DM: The platelet-activating factor signaling system and its regulators in syndromes of inflammation and thrombosis. / Crit Care Med 2002, 30:S294-S301. CrossRef
    44. Sass JO, Ensenauer R, Roschinger W, Reich H, Steuerwald U, Schirrmacher O, Engel K, Haberle J, Andresen BS, Megarbane A, / et al.: 2-Methylbutyryl-coenzyme a dehydrogenase deficiency: functional and molecular studies on a defect in isoleucine catabolism. / Mol Genet Metab 2008, 93:30-5. CrossRef
    45. Knebel LA, Zanatta A, Tonin AM, Grings M, Alvorcem Lde M, Wajner M, Leipnitz G: 2-Methylbutyrylglycine induces lipid oxidative damage and decreases the antioxidant defenses in rat brain. / Brain Res 2012, 1478:74-2. CrossRef
    46. Holden HM, Rayment I, Thoden JB: Structure and function of enzymes of the Leloir pathway for galactose metabolism. / J Biol Chem 2003, 278:43885-3888. CrossRef
    47. Novak EM, Lee EK, Innis SM, Keller BO: Identification of novel protein targets regulated by maternal dietary fatty acid composition in neonatal rat liver. / J Proteomics 2009, 73:41-9. CrossRef
    48. Boll M, L?wel M, Berndt J: Effect of unsaturated fatty acids on sterol biosynthesis in yeast. / Biochimica et Biophysica Acta (BBA) - Lipids Lipid Metabol 1980, 620:429-39. CrossRef
    49. Galjart NJ, Morreau H, Willemsen R, Gillemans N, Bonten EJ, D’Azzo A: Human lysosomal protective protein has cathepsin a-like activity distinct from its protective function. / J Biol Chem 1991, 266:14754-4762.
    50. Wera S, Hemmings BA: Serine/threonine protein phosphatases. / Biochem J 1995,311(Pt 1):17-9.
    51. Foretz M, Carling D, Guichard C, Ferre P, Foufelle F: AMP-activated protein kinase inhibits the glucose-activated expression of fatty acid synthase gene in rat hepatocytes. / J Biol Chem 1998, 273:14767-4771. CrossRef
    52. Fu H, Subramanian RR, Masters SC: 14--3 proteins: structure, function, and regulation. / Annu Rev Pharmacol Toxicol 2000, 40:617-47. CrossRef
    53. Mhawech P: 14-- proteins–an update. / Cell Res 2005, 15:228-36. CrossRef
    54. Koo SH, Flechner L, Qi L, Zhang X, Screaton RA, Jeffries S, Hedrick S, Xu W, Boussouar F, Brindle P, / et al.: The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. / Nature 2005, 437:1109-111. CrossRef
    55. Viollet B, Guigas B, Leclerc J, Hébrard S, Lantier L, Mounier R, Andreelli F, Foretz M: AMP-activated protein kinase in the regulation of hepatic energy metabolism: from physiology to therapeutic perspectives. / Acta Physiologica 2009, 196:81-8. CrossRef
    56. Wada T, Kenmochi H, Miyashita Y, Sasaki M, Ojima M, Sasahara M, Koya D, Tsuneki H, Sasaoka T: Spironolactone improves glucose and lipid metabolism by ameliorating hepatic steatosis and inflammation and suppressing enhanced gluconeogenesis induced by high-fat and high-fructose diet. / Endocrinology 2010, 151:2040-049. CrossRef
    57. McClung JK, Jupe ER, Liu XT, Dell’Orco RT: Prohibitin: potential role in senescence, development, and tumor suppression. / Exp Gerontol 1995, 30:99-24. CrossRef
    58. Mishra S, Murphy LC, Nyomba BL, Murphy LJ: Prohibitin: a potential target for new therapeutics. / Trends Mol Med 2005, 11:192-97. CrossRef
    59. Vessal M, Mishra S, Moulik S, Murphy LJ: Prohibitin attenuates insulin-stimulated glucose and fatty acid oxidation in adipose tissue by inhibition of pyruvate carboxylase. / FEBS J 2006, 273:568-76. CrossRef
    60. Burton GR, Nagarajan R, Peterson CA, McGehee RE Jr: Microarray analysis of differentiation-specific gene expression during 3T3-L1 adipogenesis. / Gene 2004, 329:167-85. CrossRef
    61. Artal-Sanz M, Tavernarakis N: Prohibitin couples diapause signalling to mitochondrial metabolism during ageing in C. elegans. / Nature 2009, 461:793-97. CrossRef
    62. Wu X, Zhang L, Gurley E, Studer E, Shang J, Wang T, Wang C, Yan M, Jiang Z, Hylemon PB, / et al.: Prevention of free fatty acid-induced hepatic lipotoxicity by 18beta-glycyrrhetinic acid through lysosomal and mitochondrial pathways. / Hepatology 2008, 47:1905-915. CrossRef
    63. Cousin SP, Hugl SR, Wrede CE, Kajio H, Myers MG Jr, Rhodes CJ: Free fatty acid-induced inhibition of glucose and insulin-like growth factor I-induced deoxyribonucleic acid synthesis in the pancreatic beta-cell line INS-1. / Endocrinology 2001, 142:229-40. CrossRef
    64. Kuo C-F, Hsieh C-H, Lin W-Y: Proteomic response of LAP-activated RAW 264.7 macrophages to the anti-inflammatory property of fungal ergosterol. / Food Chem 2011, 126:207-12. CrossRef
    65. Ramirez-Zacarias JL, Castro-Munozledo F, Kuri-Harcuch W: Quantitation of adipose conversion and triglycerides by staining intracytoplasmic lipids with Oil red O. / Histochemistry 1992, 97:493-97. CrossRef
    66. Amacher DE, Martin BA: Tetracycline-induced steatosis in primary canine hepatocyte cultures. / Fundam Appl Toxicol 1997, 40:256-63. CrossRef
    67. Heider JG, Boyett RL: The picomole determination of free and total cholesterol in cells in culture. / J Lipid Res 1978, 19:514-18.
    68. Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri GM, Carnemolla B, Orecchia P, Zardi L, Righetti PG: Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. / Electrophoresis 2004, 25:1327-333. CrossRef
    69. Li Q, Huang J, Liu S, Li J, Yang X, Liu Y, Liu Z: Proteomic analysis of young leaves at three developmental stages in an albino tea cultivar. / Proteome Sci 2011, 9:44. CrossRef
  • 作者单位:Zhonghua Liu (1) (2) (3)
    Qin Li (2) (3)
    Jianan Huang (2)
    Qionglin Liang (1)
    Yujun Yan (3)
    Haiyan Lin (3)
    Wenjun Xiao (3)
    Yong Lin (3)
    Sheng Zhang (3)
    Bin Tan (3)
    Guoan Luo (1)

    1. Department of Chemistry, Tsinghua University and Key Laboratory of Biological Organic Phosphorus and Chemical Biology, Ministry of Education, Beijing, 100084, China
    2. Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization and Key Laboratory of Tea Science, Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China
    3. National Research Center of Engineering, Technology for Utilization of Botanical Functional Ingredients, Changsha, Hunan, 410128, China
文摘
Background (?-Epigallocatechin-3-gallate (EGCG), the most abundant catechin found in green tea, effectively reduces body weight and tissue and blood lipid accumulation. To explore the mechanism by which EGCG inhibits cellular lipid accumulation in free fatty acid (FFA) induced HepG2 cell culture, we investigated the proteome change of FFA-induced HepG2 cells exposed to EGCG using two-dimensional gel electrophoresis and mass spectrometry. Results In this study, 36 protein spots showed a significant change in intensity by more than 1.5-fold from the control group to the FFA group and from the FFA group to the FFA + EGCG group. Among them, 24 spots were excised from gels and identified by LC-MS/MS. In total, 18 proteins were successfully identified. All identified proteins were involved in lipid metabolism, glycometabolism, antioxidant defense, respiration, cytoskeleton organization, signal transduction, DNA repair, mRNA processing, iron storage, or were chaperone proteins. This indicated that these physiological processes may play roles in the mechanism of inhibition of lipid accumulation by EGCG in FFA-induced HepG2 cells. Western blotting analysis was used to verify the expression levels of differentially expressed proteins, which agree with the proteomic results. Conclusions From the proteomic analysis, we hypothesized that EGCG reduced cellular lipid accumulation in FFA-induced HepG2 cells through the activation of AMP-activated protein kinase (AMPK) resulting from the generation of reactive oxygen species (ROS). The induction of ROS may be a result of EGCG regulation of the antioxidant defense system. Activation of AMPK shifted some FFA toward oxidation, away from lipid and triglyceride storage, and suppressed hepatic gluconeogenesis. The findings of this study improve our understanding of the molecular mechanisms of inhibition of lipid accumulation by EGCG in HepG2 cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700