用户名: 密码: 验证码:
Effects and mechanisms of resveratrol on the amelioration of oxidative stress and hepatic steatosis in KKAy mice
详细信息    查看全文
  • 作者:Wei Zhu (3)
    Sifan Chen (1) (2) (3)
    Zilun Li (4)
    Xiaohong Zhao (5)
    Wenxue Li (3)
    Yanshuang Sun (1) (2)
    Zili Zhang (1) (2)
    Wenhua Ling (1) (2)
    Xiang Feng (1) (2)

    3. Guangzhou Center for Disease Control and Prevention
    ; Guangzhou ; Guangdong ; People鈥檚 Republic of China
    1. School of Public Health
    ; Sun Yat-Sen University ; Guangzhou ; Guangdong ; People鈥檚 Republic of China
    2. Guangdong Provincial Key Laboratory of Food
    ; Nutrition and Health ; Guangzhou ; Guangdong ; People鈥檚 Republic of China
    4. Division of Vascular Surgery
    ; The First Affiliated Hospital ; Sun Yat-sen University ; Guangzhou ; Guangdong ; People鈥檚 Republic of China
    5. Department of Nephrology
    ; The First Affiliated Hospital ; Sun Yat-sen University ; Guangzhou ; Guangdong ; People鈥檚 Republic of China
  • 关键词:NAFLD ; Lipid metabolic disorder ; Oxidative stress ; Resveratrol ; Sirt1 ; AMPK
  • 刊名:Nutrition & Metabolism
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:11
  • 期:1
  • 全文大小:1,481 KB
  • 参考文献:1. Angulo, P (2002) Nonalcoholic fatty liver disease. N Engl J Med 346: pp. 1221-1231 CrossRef
    2. Cohen, JC, Horton, JD, Hobbs, HH (2011) Human fatty liver disease: old questions and new insights. Science 332: pp. 1519-1523 CrossRef
    3. Donnelly, KL, Smith, CI, Schwarzenberg, SJ, Jessurun, J, Boldt, MD, Parks, EJ (2005) Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest 115: pp. 1343-1351 CrossRef
    4. Reid, BN, Ables, GP, Otlivanchik, OA, Schoiswohl, G, Zechner, R, Blaner, WS, Goldberg, IJ, Schwabe, RF, Chua, SC, Huang, LS (2008) Hepatic overexpression of hormone-sensitive lipase and adipose triglyceride lipase promotes fatty acid oxidation, stimulates direct release of free fatty acids, and ameliorates steatosis. J Biol Chem 283: pp. 13087-13099 CrossRef
    5. Pervaiz, S (2003) Resveratrol: from grapevines to mammalian biology. FASEB J 17: pp. 1975-1985 CrossRef
    6. Thirunavukkarasu, M, Penumathsa, SV, Koneru, S, Juhasz, B, Zhan, L, Otani, H, Bagchi, D, Das, DK, Maulik, N (2007) Resveratrol alleviates cardiac dysfunction in streptozotocin-induced diabetes: role of nitric oxide, thioredoxin, and heme oxygenase. Free Radic Biol Med 43: pp. 720-729 CrossRef
    7. Baur, JA, Pearson, KJ, Price, NL, Jamieson, HA, Lerin, C, Kalra, A, Prabhu, VV, Allard, JS, Lopez-Lluch, G, Lewis, K, Pistell, PJ, Poosala, S, Becker, KG, Boss, O, Gwinn, D, Wang, M, Ramaswamy, S, Fishbein, KW, Spencer, RG, Lakatta, EG, Le Couteur, D, Shaw, RJ, Navas, P, Puigserver, P, Ingram, DK, de Cabo, R, Sinclair, DA (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444: pp. 337-342 CrossRef
    8. Masubuchi, Y, Sugiyama, S, Horie, T (2009) Th1/Th2 cytokine balance as a determinant of acetaminophen-induced liver injury. Chem Biol Interact 179: pp. 273-279 CrossRef
    9. Sun, C, Zhang, F, Ge, X, Yan, T, Chen, X, Shi, X, Zhai, Q (2007) Sirt1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell Metab 6: pp. 307-319 CrossRef
    10. Long, YC, Zierath, JR (2006) AMP-activated protein kinase signaling in metabolic regulation. J Clin Invest 116: pp. 1776-1783 CrossRef
    11. Fillmore, N, Jacobs, DL, Mills, DB, Winder, WW, Hancock, CR (2010) Chronic AMP-activated protein kinase activation and a high-fat diet have an additive effect on mitochondria in rat skeletal muscle. J Appl Physiol 109: pp. 511-520 CrossRef
    12. Cant贸, C, Gerhart-Hines, Z, Feige, JN, Lagouge, M, Noriega, L, Milne, JC, Elliott, PJ, Puigserver, P, Auwerx, J (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and Sirt1 activity. Nature 458: pp. 1056-1060 CrossRef
    13. Lan, F, Cacicedo, JM, Ruderman, N, Ido, Y (2008) Sirt1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation. J Biol Chem 283: pp. 27628-27635 CrossRef
    14. Castle, CK, Colca, JR, Melchior, GW (1993) Lipoprotein profile characterization of the KKA(y) mouse, a rodent model of type II diabetes, before and after treatment with the insulin-sensitizing agent pioglitazone. Arterioscler Thromb 13: pp. 302-309 CrossRef
    15. Chen, S, Li, J, Zhang, Z, Li, W, Sun, Y, Zhang, Q, Feng, X, Zhu, W (2012) Effects of resveratrol on the amelioration of insulin resistance in KKAy mice. Can J Physiol Pharmacol 90: pp. 237-242 CrossRef
    16. Lagouge, M, Argmann, C, Gerhart-Hines, Z, Meziane, H, Lerin, C, Daussin, F, Messadeq, N, Milne, J, Lambert, P, Elliott, P, Geny, B, Laakso, M, Puigserver, P, Auwerx, J (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127: pp. 1109-1122 CrossRef
    17. Zhang, X, Cao, J, Jiang, L, Zhong, L (2009) Suppressive effects of hydroxytyrosol on oxidative stress and nuclear Factor-kappaB activation in THP-1 cells. Biol Pharm Bull 32: pp. 578-582 CrossRef
    18. Yu, F, Takahashi, T, Moriya, J, Kawaura, K, Yamakawa, J, Kusaka, K, Itoh, T, Sumino, H, Morimoto, S, Kanda, T (2006) Angiotensin-II receptor antagonist alleviates non-alcoholic fatty liver in KKAy obese mice with type 2 diabetes. J Int Med Res 34: pp. 297-302 CrossRef
    19. Shakibaei, M, Harikumar, KB, Aggarwal, BB (2009) Resveratrol addiction: to die or not to die. Mol Nutr Food Res 53: pp. 115-128 CrossRef
    20. Fromenty, B, Robin, MA, Igoudjil, A, Mansouri, A, Pessayre, D (2004) The ins and outs of mitochondrial dysfunction in NASH. Diabetes Metab 30: pp. 121-138 CrossRef
    21. Seki, S, Kitada, T, Yamada, T, Sakaguchi, H, Nakatani, K, Wakasa, K (2002) In situ detection of lipid peroxidation and oxidative DNA damage in non-alcoholic fatty liver diseases. J Hepatol 37: pp. 56-62 CrossRef
    22. Aronis, A, Madar, Z, Tirosh, O (2005) Mechanism underlying oxidative stress-mediated lipotoxicity: exposure of J774.2 macrophages to triacylglycerols facilitates mitochondrial reactive oxygen species production and cellular necrosis. Free Radic Biol Med 38: pp. 1221-1230 CrossRef
    23. Dobrian, AD, Schriver, SD, Khraibi, AA, Prewitt, RL (2004) Pioglitazone prevents hypertension and reduces oxidative stress in diet-induced obesity. Hypertension 43: pp. 48-56 CrossRef
    24. Saltiel, AR, Kahn, CR (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414: pp. 799-806 CrossRef
    25. Yen, GC, Duh, PD, Lin, CW (2003) Effects of resveratrol and 4-hexylresorcinol on hydrogen peroxide-induced oxidative DNA damage in human lymphocytes. Free Radic Res 37: pp. 509-514 CrossRef
    26. Haemmerle, G, Lass, A, Zimmermann, R, Gorkiewicz, G, Meyer, C, Rozman, J, Heldmaier, G, Maier, R, Theussl, C, Eder, S, Kratky, D, Wagner, EF, Klingenspor, M, Hoefler, G, Zechner, R (2006) Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science 312: pp. 734-737 CrossRef
    27. Turpin, SM, Hoy, AJ, Brown, RD, Rudaz, CG, Honeyman, J, Matzaris, M, Watt, MJ (2011) Adipose triacylglycerol lipase is a major regulator of hepatic lipid metabolism but not insulin sensitivity in mice. Diabetologia 54: pp. 146-156 CrossRef
    28. Howitz, KT, Bitterman, KJ, Cohen, HY, Lamming, DW, Lavu, S, Wood, JG, Zipkin, RE, Chung, P, Kisielewski, A, Zhang, LL, Scherer, B, Sinclair, DA (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425: pp. 191-196 CrossRef
    29. Beher, D, Wu, J, Cumine, S, Kim, KW, Lu, SC, Atangan, L, Wang, M (2009) Resveratrol is not a direct activator of SIRT1 enzyme activity. Chem Biol Drug Des 74: pp. 619-624 CrossRef
    30. Hubbard, BP, Gomes, AP, Dai, H, Li, J, Case, AW, Considine, T, Riera, TV, Lee JE, ESY, Lamming, DW, Pentelute, BL, Schuman, ER, Stevens, LA, Ling, AJ, Armour, SM, Michan, S, Zhao, H, Jiang, Y, Sweitzer, SM, Blum, CA, Disch, JS, Ng, PY, Howitz, KT, Rolo, AP, Hamuro, Y, Moss, J, Perni, RB, Ellis, JL, Vlasuk, GP, Sinclair, DA (2013) Evidence for a common mechanism of SIRT1 regulation by allosteric activators. Science 339: pp. 1216-1219 CrossRef
    31. Cakir, I, Perello, M, Lansari, O, Messier, NJ, Vaslet, CA, Nillni, EA (2009) Hypothalamic Sirt1 regulates food intake in a rodent model system. PLoS One 4: pp. e8322 CrossRef
    32. de Kreutzenberg, SV, Ceolotto, G, Papparella, I, Bortoluzzi, A, Semplicini, A, Dalla Man, C, Cobelli, C, Fadini, GP, Avogaro, A (2010) Downregulation of the longevity-associated protein sirtuin 1 in insulin resistance and metabolic syndrome: potential biochemical mechanisms. Diabetes 59: pp. 1006-1015 CrossRef
    33. Barthel, A, Schmoll, D, Unterman, TG (2005) FoxO proteins in insulin action and metabolism. Trends Endocrinol Metab 16: pp. 183-189 CrossRef
    34. Plas, DR, Thompson, CB (2003) Akt activation promotes degradation of tuberin and FOXO3a via the proteasome. J Biol Chem 278: pp. 12361-12366 CrossRef
    35. Johnson, LN, Noble, ME, Owen, DJ (1996) Active and inactive protein kinases: structural basis for regulation. Cell 85: pp. 149-158 CrossRef
    36. Schimmack, G, Defronzo, RA, Musi, N (2006) AMP-activated protein kinase: role in metabolism and therapeutic implications. Diabetes Obes Metab 8: pp. 591-602 CrossRef
    37. Ruderman, N, Prentki, M (2004) AMP kinase and malonyl-CoA: targets for therapy of the metabolic syndrome. Nat Rev Drug Discov 3: pp. 340-351 CrossRef
    38. Park, SJ, Ahmad, F, Philp, A, Baar, K, Williams, T, Luo, H, Ke, H, Rehmann, H, Taussig, R, Brown, AL, Kim, MK, Beaven, MA, Burgin, AB, Manganiello, V, Chung, JH (2012) Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 148: pp. 421-433 CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Nutrition
    Metabolic Diseases
    Clinical Nutrition
  • 出版者:BioMed Central
  • ISSN:1743-7075
文摘
Background The exact mechanism of the protective role of Resveratrol (Res) in lipid metabolism and oxidative stress is not well elucidated. The present study aimed to investigate the potential benefits and possible mechanisms of Res on the amelioration of oxidative stress and hepatic steatosis in a KKAy mouse model. Methods A total of 30 KKAy male mice were randomly divided into three groups: a normal chow group, a low resveratrol group and a high resveratrol group. After a 12-wk study period, serum levels of TG, TC, LDL-C and HDL-C, the liver content of TG and TC, ROS, GSH, GPx, SOD and MDA levels were measured. Ectopic lipid deposition was observed in sectioned frozen liver tissues. The mRNA levels of ATGL and HSL in the liver tissues were determined via real-time PCR. Furthermore, the protein expression of p47phox, gp91phox, ATGL, HSL, Sirt1, AMPK and FOXO1 were analyzed using western blotting. Results Following Res supplementation, serum levels of TG and MDA were decreased, while the HDL-C and SOD levels were increased in KKAy mice. Furthermore, Res treatment increased GSH and GPx in liver tissues, while it decreased ROS. In addition, Res significantly reduced hepatic steatosis. After Res treatment, concentrations of p47phox (membrane) and gp91phox proteins were reduced, while p-HSL, HSL and ATGL protein expression levels were increased. Mechanistically, the levels of Sirt1, p-AMPK and p-FOXO1 expression in the liver tissues were up-regulated following supplementation with Res, and FOXO1 protein was released from the nucleus into the cytoplasm. Conclusions Res is able to attenuate hepatic steatosis and lipid metabolic disorder and enhance the antioxidant ability in KKAy mice, possibly by up-regulating Sirt1 expression and the phosphorylation of AMPK.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700