用户名: 密码: 验证码:
Whole-body impedance control of wheeled mobile manipulators
详细信息    查看全文
  • 作者:Alexander Dietrich ; Kristin Bussmann ; Florian Petit ; Paul Kotyczka…
  • 关键词:Whole ; body control ; Impedance control ; Admittance control ; Humanoid robots ; Mobile manipulation ; Stability analysis
  • 刊名:Autonomous Robots
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:40
  • 期:3
  • 页码:505-517
  • 全文大小:2,281 KB
  • 参考文献:Albu-Schäffer, A., Ott, C., Frese, U., & Hirzinger, G. (2003). Cartesian Impedance control of redundant robots: Recent results with the DLR-Light-Weight-Arms. In Proceedings of the 2003 IEEE International Conference on Robotics and Automation (pp. 3704–3709).
    Albu-Schäffer, A., Ott, C., & Hirzinger, G. (2007). A unified passivity-based control framework for position, torque and impedance control of flexible joint robots. International Journal of Robotics Research, 27(1), 23–39.CrossRef
    Asfour, T., Regenstein, K., Schröder, J., Bierbaum, A., Vahrenkamp, N., & Dillmann, R. (2006). ARMAR-III: An integrated humanoid platform for sensory-motor control. In Proceedings of the 6th IEEE-RAS International Conference on Humanoid Robots (pp. 169–175).
    Bohren, J., Rusu, R.B., Jones, E.G., Marder-Eppstein, E., Pantofaru, C., Wise, M., Mösenlechner, L., Meeussen, W., & Holzer, S. (2011). Towards autonomous robotic butlers: Lessons learned with the PR2. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation (pp. 5568–5575).
    Borst, C., Wimböck, T., Schmidt, F., Fuchs, M., Brunner, B., Zacharias, F., Giordano, P.R., Konietschke, R., Sepp, W., Fuchs, S., Rink, C., Albu-Schäffer, A., & Hirzinger, G. (2009). Rollin’ Justin—Mobile platform with variable base. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation (pp. 1597–1598).
    Campion, G., Bastin, G., & D’Andréa-Novel, B. (1996). Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. IEEE Transactions on Robotics and Automation, 12(1), 47–62.CrossRef
    Connette, C.P., Pott, A., Hägele, M., & Verl, A. (2008). Control of an Pseudo-omnidirectional, non-holonomic, mobile robot based on an ICM representation in spherical coordinates. In Proceedings of the 47th IEEE Conference on Decision and Control (pp. 4976–4983).
    Dietrich, A., Ott, C., & Albu-Schäffer, A. (2013). Multi-objective compliance control of redundant manipulators: Hierarchy, control, and stability. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 3043–3050).
    Dietrich, A., Ott, C., & Albu-Schäffer, A. (2015). An overview of null space projections for redundant, torque-controlled robots. International Journal of Robotics Research. doi:10.​1177/​0278364914566516​ .
    Dietrich, A., Wimböck, T., & Albu-Schäffer, A. (2011). Dynamic whole-body mobile manipulation with a torque controlled humanoid robot via impedance control laws. In Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 3199–3206).
    Dietrich, A., Wimböck, T., Albu-Schäffer, A., & Hirzinger, G. (2012). Integration of reactive, torque-based self-collision avoidance into a task hierarchy. IEEE Transactions on Robotics, 28(6), 1278–1293.CrossRef
    Dietrich, A., Wimböck, T., Albu-Schäffer, A., & Hirzinger, G. (2012). Reactive whole-body control: Dynamic mobile manipulation using a large number of actuated degrees of freedom. IEEE Robotics & Automation Magazine, 19(2), 20–33.CrossRef
    Dietrich, A., Wimböck, T., Täubig, H., Albu-Schäffer, A., & Hirzinger, G. (2011). Extensions to reactive self-collision avoidance for torque and position controlled humanoids. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation (pp. 3455–3462).
    Giordano, P.R., Fuchs, M., Albu-Schäffer, A., & Hirzinger, G. (2009). On the kinematic modeling and control of a mobile platform equipped with steering wheels and movable legs. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation (pp. 4080–4087).
    Hogan, N. (1985). Impedance control: An approach to manipulation: Part I—theory, part II—implementation, part III—applications. Journal of Dynamic Systems, Measurement, and Control, 107, 1–24.CrossRef MATH
    Iwata, H., & Sugano, S. (2009). Design of human symbiotic robot TWENDY-ONE. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation (pp. 580–586).
    Kaneko, K., Kanehiro, F., Morisawa, M., Akachi, K., Miyamori, G., Hayashi, A., & Kanehira, N. (2011). Humanoid Robot HRP-4—Humanoid robotics platform with lightweight and slim body. In Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 4400–4407).
    Khatib, O. (1987). A unified approach for motion and force control of robot manipulators: The operational space formulation. IEEE Journal of Robotics and Automation, RA–3(1), 43–53.CrossRef
    Khatib, O., Sentis, L., Park, J., & Warren, J. (2004). Whole-body dynamic behavior and control of human-like robots. International Journal of Humanoid Robotics, 1(1), 29–43.CrossRef
    Leidner, D., Dietrich, A., Schmidt, F., Borst, C., & Albu-Schäffer, A. (2014). Object-centered hybrid reasoning for whole-body mobile manipulation. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (pp. 1828–1835).
    Lohmeier, S., Buschmann, T., & Ulbrich, H. (2009). Humanoid robot LOLA. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation (pp. 775–780).
    Moro, F.L., Gienger, M., Goswami, A., Tsagarakis, N.G., & Caldwell, D.G. (2013). An Attractor-based Whole-Body Motion Control (WBMC) System for humanoid robots. In Proceedings of the 13th IEEE-RAS International Conference on Humanoid Robots (pp. 42–49).
    Murray, R. M., Li, Z., & Sastry, S. S. (1994). A mathematical introduction to robotic manipulation. Boca Raton, FL: CRC Press.MATH
    Nagasaka, K., Kawanami, Y., Shimizu, S., Kito, T., Tsuboi, T., Miyamoto, A., Fukushima, T., & Shimomura, H. (2010). Whole-body cooperative force control for a two-armed and two-wheeled mobile robot using generalized inverse dynamics and idealized joint units. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation (pp. 3377–3383).
    Ohnishi, K., Shibata, M., & Murakami, T. (1996). Motion control for advanced mechatronics. IEEE/ASME Transactions on Mechatronics, 1(1), 56–67.CrossRef
    Ott, C. (2008). Cartesian impedance control of redundant and flexible-joint robots. Springer tracts in advanced robotics (Vol. 49). Berlin: Springer.
    Sakagami, Y., Watanabe, R., Aoyama, C., Matsunaga, S., Higaki, N., & Fujimura, K. (2002). The intelligent ASIMO: System overview and integration. In Proceedings of the 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 2478–2483).
    Sentis, L., & Khatib, O. (2005). Synthesis of whole-body behaviors through hierarchical control of behavioral primitives. International Journal of Humanoid Robotics, 2(4), 505–518.CrossRef
    Siciliano, B., & Khatib, O. (2008). Springer handbook of robotics. Berlin: Springer.CrossRef MATH
    Stilman, M., Olson, J., & Gloss, W. (2010). Golem Krang: Dynamically stable humanoid robot for mobile manipulation. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation (pp. 3304–3309).
    Thuilot, B., D’Andréa-Novel, B., & Micaelli, A. (1996). Modeling and feedback control of mobile robots equipped with several steering wheels. IEEE Transactions on Robotics and Automation, 12(3), 375–390.CrossRef
    van der Schaft, A. (2000). \({L}_{2}\) -Gain and passivity techniques in nonlinear control (2nd ed.). Berlin: Springer.
    van Ham, R., Sugar, T. G., Vanderborght, B., Hollander, K. W., & Lefeber, D. (2009). Compliant actuator designs: Review of actuators with passive adjustable compliance/controllable stiffness for robotic applications. IEEE Robotics & Automation Magazine, 16(3), 81–94.CrossRef
  • 作者单位:Alexander Dietrich (1)
    Kristin Bussmann (1)
    Florian Petit (1)
    Paul Kotyczka (2)
    Christian Ott (1)
    Boris Lohmann (2)
    Alin Albu-Schäffer (1) (3)

    1. Institute of Robotics and Mechatronics, German Aerospace Center (DLR), Muenchner Strasse 20, 82234, Wessling, Germany
    2. Institute of Automatic Control, Technische Universität München (TUM), Boltzmannstrasse 15, 85748, Garching, Germany
    3. Sensor-Based Robotic Systems and Intelligent Assistance Systems, Technische Universität München (TUM), Boltzmannstrasse 3, 85748, Garching, Germany
  • 刊物类别:Computer Science
  • 刊物主题:Artificial Intelligence and Robotics
    Automation and Robotics
    Electronic and Computer Engineering
    Computer Imaging, Vision, Pattern Recognition and Graphics
    Mechanical Engineering
    Simulation and Modeling
  • 出版者:Springer Netherlands
  • ISSN:1573-7527
文摘
Humanoid service robots in domestic environments have to interact with humans and their surroundings in a safe and reliable way. One way to manage that is to equip the robotic systems with force-torque sensors to realize a physically compliant whole-body behavior via impedance control. To provide mobility, such robots often have wheeled platforms. The main advantage is that no balancing effort has to be made compared to legged humanoids. However, the nonholonomy of most wheeled systems prohibits the direct implementation of impedance control due to kinematic rolling constraints that must be taken into account in modeling and control. In this paper we design a whole-body impedance controller for such a robot, which employs an admittance interface to the kinematically controlled mobile platform. The upper body impedance control law, the platform admittance interface, and the compensation of dynamic couplings between both subsystems yield a passive closed loop. The convergence of the state to an invariant set is shown. To prove asymptotic stability in the case of redundancy, priority-based approaches can be employed. In principle, the presented approach is the extension of the well-known and established impedance controller to mobile robots. Experimental validations are performed on the humanoid robot Rollin’ Justin. The method is suitable for compliant manipulation tasks with low-dimensional planning in the task space. Keywords Whole-body control Impedance control Admittance control Humanoid robots Mobile manipulation Stability analysis

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700