用户名: 密码: 验证码:
A full-scale roller-rig for railway vehicles: multibody modelling and Hardware In the Loop architecture
详细信息    查看全文
  • 作者:R. Conti ; E. Meli ; A. Ridolfi
  • 关键词:Full ; scale roller ; rig ; Wheel–roller contact ; Wheel–rail contact ; Hardware In the Loop ; Railway vehicles
  • 刊名:Multibody System Dynamics
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:37
  • 期:1
  • 页码:69-93
  • 全文大小:4,481 KB
  • 参考文献:1. Jaschinki, A., Chollet, H., Iwnicki, S.: The application of the roller rigs to railway vehicle dynamics. Veh. Syst. Dyn. 31, 325–344 (1999) CrossRef
    2. Dukkipati, R.: A parametric study of the lateral stability of a railway bogie on a roller rig. In: Proceedings of the Institution of Mechanical Engineering Part F, vol. 213, pp. 39–47 (1999)
    3. Ahn, K., Park, J., Ryew, S.: The construction of a full-scale wheel/rail roller rig in Korea. In: Proceedings of the IEEE International Conference on Automation Science and Engineering (CASE), pp. 802–803 (2012)
    4. Lee, N., Kang, C., Lee, W., Dongen, T.: Roller rig tests of a semi-active suspension system for a railway vehicle. In: Proceedings of the IEEE International Conference on Control, Automation and Systems (ICCAS), pp. 117–122 (2012)
    5. Dukkipati, R.V.: Lateral stability analysis of a railway truck on roller rig. Mech. Mach. Theory 36, 189–204 (2001) CrossRef MATH
    6. Zhang, W., Chen, J., Wu, X., Jin, X.: Wheel/rail adhesion and analysis by using full scale roller rig. Wear 253, 82–88 (2002) CrossRef
    7. Allotta, B., Conti, R., Meli, E., Pugi, L., Ridolfi, A.: Development of an HIL railway roller rig model for the traction and braking testing activities under degraded adhesion conditions. Int. J. Non-Linear Mech. 57, 50–64 (2013) CrossRef MATH
    8. Malvezzi, M., Allotta, B., Pugi, L.: Feasibility of degraded adhesion tests in a locomotive roller rig. In: Proceedings of the Institution of Mechanical Engineering Part F, vol. 222, pp. 27–43 (2008)
    9. Bosso, N., Zampieri, N.: Real-time implementation of a traction control algorithm on a scaled roller-rig. Veh. Syst. Dyn. 51(4), 517–541 (2013) CrossRef
    10. Spiryagin, M., Sun, Y.Q., Cole, C., Mc Sweeney, T., Simson, S., Persson, I.: Development of a real-time bogie test-rig model based on railway specialised multibody software. Veh. Syst. Dyn. 51(2), 236–250 (2013) CrossRef
    11. Bosso, N., Gugliotta, A., Soma, A., Spiryagin, M.: Adhesion force estimation on 1/5 scaled test rig. In: Proceedings of the ECCOMAS Multibody Dynamics Conference, Warsaw, Poland (2009)
    12. Bosso, N., Gugliotta, A., Soma, A., Spiryagin, M.: Methodology for the determination of wheel–roller friction coefficient on 1/5 scaled test rig. In: Proceedings of the 8th International Conference on Contact Mechanics and Wear of Roller/Wheel Systems (CM2009), Florence, Italy (2009)
    13. www.​mathworks.​com . Official Site of Mathworks. Natick (2013)
    14. Trenitalia SpA: UIC-Z1 coach. Internal Report of Trenitalia (2000)
    15. Trenitalia SpA: WSP system. Internal Report of Trenitalia (2005)
    16. Trenitalia SpA: On-track braking tests. Internal Report of Trenitalia (2006)
    17. Trenitalia SpA: Full-scale roller-rig: technical documentation. Internal Report of Trenitalia (2011)
    18. SICME Motori: IPM synchronous motor datasheet. Internal Report of SICME Motori (2010)
    19. Meli, E., Ridolfi, A.: An innovative wheel–rail contact model for railway vehicles under degraded adhesion conditions. Multibody Syst. Dyn. 33, 285–313 (2014) MathSciNet CrossRef
    20. Sontag, E.D.: Mathematical Control Theory. Springer, New York (1998) CrossRef MATH
    21. Khalil, H.K.: Nonlinear Systems. Prentice Hall, New York (2002) MATH
    22. Allotta, B., Pugi, L., Ridolfi, A., Malvezzi, M., Vettori, G., Rindi, A.: Evaluation of odometry algorithm performance using railway vehicle dynamic model. Veh. Syst. Dyn. 50, 699–724 (2012) CrossRef
    23. Krishnan, R.: Permanent Magnet Synchronous and Brushless DC Motor Drives. CRC Press, Taylor & Francis (2010)
    24. Vagati, A., Pellegrino, G., Guglielmi, P.: Design tradeoff between constant power speed range, uncontrolled generator operation and rated current of IPM motor drives. IEEE Trans. Ind. Appl. 47, 1995–2003 (2011) CrossRef
    25. Li, S., Xia, C., Zhou, X.: Disturbance rejection control method for permanent magnet synchronous motor speed-regulation system. Mechatronics 22, 706–714 (2012) CrossRef
    26. Vu, N.T., Choi, H.H., Jung, J.: Certainty equivalence adaptive speed controller for permanent magnet synchronous motor. Mechatronics 22, 811–818 (2012) CrossRef
    27. Malvezzi, M., Meli, E., Rindi, A., Falomi, S.: Determination of wheel–rail contact points with semianalytic method. Multibody Syst. Dyn. 20, 327–358 (2008) CrossRef MATH
    28. Malvezzi, M., Meli, E., Falomi, S.: Multibody modeling of railway vehicles: innovative algorithms for the detection of wheel–rail contact points. Wear 271, 453–461 (2011) CrossRef
    29. Magheri, S., Malvezzi, M., Meli, E., Falomi, S., Rindi, A.: An innovative wheel–rail contact model for multibody applications. Wear 271, 462–471 (2011) CrossRef
    30. Kalker, J.J.: Three-Dimensional Elastic Bodies in Rolling Contact. Kluwer Academic, Norwell (1990) CrossRef MATH
    31. Polach, O.: Creep forces in simulations of traction vehicles running on adhesion limit. Wear 258, 992–1000 (2005) CrossRef
    32. Pombo, J., Ambrosio, J.: Application of a wheel–rail contact model to railway dynamics in small radius curved tracks. Multibody Syst. Dyn. 19, 91–114 (2008) CrossRef MATH
    33. Pombo, J., Silva, A.J.: A new wheel–rail contact model for railway dynamics. Veh. Syst. Dyn. 45, 165–189 (2007) CrossRef
    34. Blau, P.J.: Embedding wear models into friction models. Tribol. Lett. 34, 75–79 (2009) CrossRef
    35. Boiteux, M.: Le probleme de l’adherence en freinage. In: Revue generale des chemins de fer, pp. 59–72 (1986)
    36. Voltr, P., Lata, M., Cerny, O.: Measuring of wheel–rail adhesion characteristics at a test stand. In: Proceedings of XVIII Conference on Engineering Mechanics (2012)
    37. Pérez, A.T., Fatjó, G.G., Hadfield, M., Austen, S.: A model of friction for a pin-on-disc configuration with imposed pin rotation. Mech. Mach. Theory 46, 1755–1772 (2011) CrossRef
    38. Polach, O.: A fast wheel–rail forces calculation computer code. Veh. Syst. Dyn. 33, 728–739 (1999)
    39. Shabana, A.A., Zaza, K.E., Escalona, J.E., Sany, J.R.: Development of elastic force model for wheel/rail contact problems. J. Sound Vib. 269, 295–325 (2004) CrossRef
    40. Shabana, A.A., Tobaa, M., Sugiyama, H., Zaazaa, K.E.: On the computer formulations of the wheel/rail contact problem. Nonlinear Dyn. 40, 169–193 (2005) CrossRef MATH
    41. Allotta, B., Meli, E., Ridolfi, A., Rindi, A.: Development of an innovative wheel–rail contact model for the analysis of degraded adhesion in railway systems. Tribol. Int. 69, 128–140 (2013) CrossRef
    42. Nocedal, J., Wright, S.: Numerical Optimization. Springer Series in Operation Research. Berlin (1999) CrossRef MATH
    43. Kelley, C.: Iterative Methods for Linear and Nonlinear Equations. SIAM, Philadelphia (1995) CrossRef MATH
    44. Shampine, L., Reichelt, M.: The Matlab ODE suite. SIAM J. Sci. Comput. 18, 1–22 (1997) MathSciNet CrossRef MATH
    45. UNI-EN: Railway applications, Braking-Wheel Sliding Protection. UNI-EN 15595 (2009)
  • 作者单位:R. Conti (1)
    E. Meli (1)
    A. Ridolfi (1)

    1. Department of Industrial Engineering, University of Florence, Via di S.Marta n. 3, 50139, Firenze, Italy
  • 刊物类别:Engineering
  • 刊物主题:Vibration, Dynamical Systems and Control
    Optimization
    Electronic and Computer Engineering
    Mechanical Engineering
    Automotive and Aerospace Engineering and Traffic
  • 出版者:Springer Netherlands
  • ISSN:1573-272X
文摘
In this paper an innovative Hardware In the Loop (HIL) architecture to test braking onboard subsystems on full-scale roller-rigs is described. The new approach allows reproducing on the roller-rig a generic wheel–rail adhesion pattern (especially degraded adhesion conditions) without sliding and, consequently, wear between the roller and wheel surfaces. The presented strategy is also adopted by the innovative full-scale roller-rig of the Railway Research and Approval Center of Firenze-Osmannoro (Italy); the new roller-rig has been built by Trenitalia S.p.A. and is owned by SIMPRO S.p.A. At this initial phase of the research activity, to effectively validate the proposed approach, a complete multibody model of the HIL system has been developed. The numerical model is based on the real characteristics of the components provided by Trenitalia and makes use of an innovative wheel–roller contact model. The results coming from the simulation model have been compared to the experimental data provided by Trenitalia and relative to on-track tests performed in Velim, Czech Republic, with a UIC-Z1 coach equipped with a fully-working WSP system. The preliminary validation performed with the HIL model highlights the good performance of the HIL strategy in reproducing on the roller-rig the complex interaction between degraded adhesion conditions and railway vehicle dynamics during the braking manoeuvre.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700