用户名: 密码: 验证码:
Isolation and Characterization of Antifreeze Proteins from the Antarctic Marine Microalga Pyramimonas gelidicola
详细信息    查看全文
  • 作者:Woongsic Jung ; Yunho Gwak ; Peter L. Davies ; Hak Jun Kim…
  • 关键词:Antifreeze proteins ; Antarctic marine prasinophyte ; Ice binding ; Thermal hysteresis ; In silico protein modeling
  • 刊名:Marine Biotechnology
  • 出版年:2014
  • 出版时间:October 2014
  • 年:2014
  • 卷:16
  • 期:5
  • 页码:502-512
  • 全文大小:8,015 KB
  • 参考文献:1. Baardsnes J, Kondejewski LH, Hodges RS, Chao H, Kay C, Davies PL (1999) New ice-binding face for type I antifreeze protein. FEBS Lett 463:87-1 CrossRef
    2. Bayer-Giraldi M, Uhlig C, John U, Mock T, Valentin K (2010) Antifreeze proteins in polar sea ice diatoms: diversity and gene expression in the genus / Fragilariopsis. Environ Microbiol 12:1041-052 CrossRef
    3. Bell EM, Laybourn-Parry J (2003) Mixotrophy in the Antarctic phytoflagellate, / Pyramimonas gelidicola (Chlorophyta: Prasinophyceae). J Phycol 39:644-49 CrossRef
    4. Boonsupthip W, Lee T (2003) Application of antifreeze protein for food preservation: effect of type III antifreeze protein for preservation of gel-forming of frozen and chilled actomyosin. J Food Sci 68:1804-809 CrossRef
    5. Collins RE, Deming JW (2011) Abundant dissolved genetic material in Arctic sea ice: Part I. Extracellular DNA. Polar Biol 34:1819-830 CrossRef
    6. Delano WL (2002) The PyMol molecular graphics system, version 1.3. Schrodinger, LLC
    7. Deming JW (2002) Psychrophiles and polar regions. Curr Opin Microbiol 5:301-09 CrossRef
    8. Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005-016 CrossRef
    9. Garnham CP, Gilbert JA, Hartman CP, Campbell RL, Laybourn-Parry J, Davies PL (2008) A Ca2+ dependent bacterial antifreeze protein domain has a novel β-helical ice-binding fold. Biochem J 411:171-80 CrossRef
    10. Garnham CP, Campbell RL, Davies PL (2011) Anchored chlathrate waters bind antifreeze proteins to ice. Proc Natl Acad Sci U S A 108:7363-367 CrossRef
    11. Griffith M, Yaish MWF (2004) Antifreeze proteins in overwintering plants: a tale of two activities. Trends Plant Sci 9:399-05 CrossRef
    12. Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms: I. / Cyclotella nana Hustedt and / Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229-39 CrossRef
    13. Gwak IG, Jung W, Kim HJ, Kang SH, Jin ES (2010) Antifreeze protein in Antarctic marine diatom, / Chaetoceros neogracile. Mar Biotechnol 12:630-39 CrossRef
    14. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95-8
    15. Hoshino T, Tronsmo AM, Matsumoto N, Araki T, Georges F, Goda T, Ohgiya S, Ishizaki K (1998) Freezing resistance among isolates of a psychrophilic fungus, / Typhula ishikariensis, from Norway. Proc NIPR Symp Polar Biol 11:112-18
    16. Janech MG, Krell A, Mock T, Kang JS, Raymond JA (2006) Ice-binding proteins from sea ice diatoms (Bacillariophyceae). J Phycol 42:410-16 CrossRef
    17. Jung W, Lee SG, Kang SW, Lee YS, Lee JH, Kang SH, Jin ES, Kim HJ (2012) Analysis of expressed sequence tags from the Antarctic psychrophilic green algae, / Pyramimonas gelidicola. J Microbiol Biotechnol 22:902-06 CrossRef
    18. Kang JS, Raymond JA (2004) Reduction of freeze–thaw-induced hemolysis of red blood cells by an algal ice-binding protein. CryoLetters 25:307-11
    19. Kelley LA, Sternberg MJE (2009) Protein structure prediction on the web: a case study using the Phyre server. Nat Protoc 4:363-71 CrossRef
    20. Kiko R (2009) Acquisition of freeze protection in a sea-ice crustacean through horizontal gene transfer? Polar Biol 33:543-56 CrossRef
    21. Knight CA, DeVries AL, Oolman LD (1984) Fish antifreeze protein and the freezing and recrystallization of ice. Nature 308:295-96 CrossRef
    22. Kondo H, Hanada Y, Sugimoto H, Hoshino T, Garnham CP, Davies PL, Tsuda S (2012) Ice-binding site of snow mold fungus antifreeze protein deviates from structural regularity and high conservation. Proc Natl Acad Sci U S A 109:9360-365 CrossRef
    23. Koushafar H, Pham L, Rubinsky B (1997) Chemical adjuvant cryosurgery with antifreeze proteins. J Surg Oncol 66:114-21 CrossRef
    24. Laybourn-Parry J (2002) Survival mechanisms in Antarctic lakes. Philos Trans R Soc Lond B 357:863-69 CrossRef
    25. Lee JH, Park AK, Do H, Park KS, Moh SH, Chi YM, Kim HJ (2012) Structural basis for antifreeze activity of ice-binding protein from Arctic yeast. J Biol Chem 287:11460-1468 CrossRef
    26. Lund O, Nielsen M, Lundegaard C, Worning P (2002) CPHmodels 2.0: X3M -a computer program to extract 3D models. CASP5 conference
    27. Marchant HJ (2005) Prasinophytes, / Antarctic marine protists. Eds. Scott FJ, Marchant HJ, Australian biological resources study. Australian Antarctic Division, Canberra & Hobart
    28. Marshall CB, Daley ME, Graham LA, Sykes BD, Davies PL (2002) Identification of the ice-binding face of antifreeze protein from / Tenebrio molitor. FEBS Lett 529:261-67 CrossRef
    29. Middleton A, Marshall CB, Faucher F, Bar-Dolev M, Braslavsky I, Campbell RL, Walker VK, Davies PL (2012) Antifreeze protein from freeze-tolerant grass has a beta-roll fold with an irregularly structured ice-binding site. J Mol Biol 416:713-24 CrossRef
    30. Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Prot Eng 10:1- CrossRef
    31. Nielsen M, Lundegaard C, Lund O, Petersen TN (2010) CPHmodels-3.0 -remote homology modeling using structure guided sequence profiles. Nucleic Acids Res 38:w576–w581 CrossRef
    32. Peterson TN, Brunak S, Von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785-86 CrossRef
    33. Priddle J, Hawes I, Ellis-Evans JC (1986) Antarctic aquatic ecosystems as habitats for phytoplankton. Biol Rev 61:199-38 CrossRef
    34. Raymond JA (2011) Algal ice-binding proteins change the structure of sea ice. Proc Natl Acad Sci U S A 108:E198 CrossRef
    35. Raymond JA, DeVries AL (1977) Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc Natl Acad Sci U S A 74:2589-593 CrossRef
    36. Raymond JA, Fritsen CH (2001) Semipurification and ice recrystallization inhibition activity of ice-active substances associated with Antarctic photosynthetic organisms. Cryobiology 43:63-0 CrossRef
    37. Raymond JA, Janech MG (2009) Ice-binding proteins from enoki and shiitake mushrooms. Cryobiology 58:151-56 CrossRef
    38. Raymond JA, Kim HJ (2012) Possible role of horizontal gene transfer in the colonization of sea ice by algae. PLoS ONE 7:e35968 CrossRef
    39. Raymond JA, Knight CA (2003) Ice binding, recrystallization inhibition, and cryoprotective properties of ice-active substances associated with Antarctic sea ice diatoms. Cryobiology 46:174-81 CrossRef
    40. Raymond JA, Janech MG, Fritsen CH (2009) Novel ice-binding proteins from a psychrophilic Antarctic alga (Chlamydomonadaceae, Chlorophyceae). J Phycol 45:130-36 CrossRef
    41. Regand A, Goff HD (2006) Ice recrystallization inhibition in ice cream as affected by ice structuring proteins from winter wheat grass. J Dairy Sci 89:49-7 CrossRef
    42. Sali A, Potterton L, Yuan F, van Vlijmen H, Karplus M (1995) Evaluation of comparative protein modelling by MODELLER. Proteins 23:318-26 CrossRef
    43. Saunders GW, Kraft GT (1994) Small-subunit rRNA gene sequences from representatives of selected families of the Gigartinales and Rhodymeniales (Rhodophyta): I. Evidence for the Plocamiales ord. nov. Can J Bot 72:1250-263 CrossRef
    44. Scotter AJ, Marshall CB, Graham LA, Gilbert JA, Garnham CP, Davies PL (2006) The basis for hyperactivity of antifreeze proteins. Cryobiology 53:229-39 CrossRef
    45. Smallwood M, Bowles DJ (2002) Plants in a cold climate. Philos Trans Biol Sci 357:831-47 CrossRef
    46. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731-739 CrossRef
    47. Teoh ML, Chu WL, Marchant H, Phang SM (2004) Influence of culture temperature on the growth, biochemical composition and fatty acid profiles of six Antarctic microalgae. J Appl Phycol 16:421-30 CrossRef
    48. Uhlig C, Kabisch J, Palm GJ, Valentin K, Schweder T, Krell A (2011) Heterologous expression, refolding and functional characterization of two antifreeze proteins from / Fragilariopsis cylindrus (Bacillariophyceae). Cryobiology 63:220-28
    49. Yang DSC, Hon WC, Bubanko S, Xue Y, Seetharaman J, Hew CL, Sicheri F (1998) Identification of the ice-binding surface on a type III antifreeze protein with a "flatness function" algorithm. Biophys J 74:2142-151 CrossRef
  • 作者单位:Woongsic Jung (1)
    Yunho Gwak (1)
    Peter L. Davies (2)
    Hak Jun Kim (3)
    EonSeon Jin (1)

    1. Department of Life Science, Division of Natural Sciences, Hanyang University, 133-791, Seoul, South Korea
    2. Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada, K7L 3N6
    3. Department of Chemistry, Division of Natural Sciences, Pukyong National University, 608-737, Busan, South Korea
  • ISSN:1436-2236
文摘
Antifreeze proteins (AFPs) play an important role in the psychrophilic adaptation of polar organisms. AFPs encoded by an Antarctic chlorophyte, identified as Pyramimonas gelidicola, were isolated and characterized. Two AFP isoforms were found from cDNAs and their deduced molecular weights were estimated to be 26.4?kDa (Pg-1-AFP) and 27.1?kDa (Pg-2-AFP). Both AFP cDNAs were cloned and expressed in Escherichia coli. The purified recombinant Pg-1-rAFP and Pg-2-rAFP both showed antifreeze activity based on the measurement of thermal hysteresis (TH) and morphological changes to single ice crystals. Pg-1-rAFP shaped ice crystals into a snowflake pattern with a TH value of 0.6?±-.02?°C at ~15?mg/ml. Single ice crystals in Pg-2-rAFP showed a dendritic morphology with a TH value of 0.25?±-.02?°C at the same protein concentration. Based on in silico protein structure predictions, the three-dimensional structures of P. gelidicola AFPs match those of their homologs found in fungi and bacteria. They fold as a right-handed β-helix flanked by an α-helix. Unlike the hyperactive insect AFPs, the proposed ice-binding site on one of the flat β-helical surfaces is neither regular nor well-conserved. This might be a characteristic of AFPs used for freeze tolerance as opposed to freeze avoidance. A role for P. gelidicola AFPs in freeze tolerance is also consistent with their relatively low TH values.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700