用户名: 密码: 验证码:
To Apply Microdosing or Not? Recommendations to Single Out Compounds with Non-Linear Pharmacokinetics
详细信息    查看全文
  • 作者:Sieto Bosgra ; Maria L. H. Vlaming ; Wouter H. J. Vaes
  • 刊名:Clinical Pharmacokinetics
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:55
  • 期:1
  • 页码:1-15
  • 全文大小:1,229 KB
  • 参考文献:1.Dueker SR, Vuong LT, Lohstroh PN, Giacomo JA, Vogel JS. Quantifying exploratory low dose compounds in humans with AMS. Adv Drug Deliv Rev. 2011;63(7):518–31.PubMed PubMedCentral CrossRef
    2.Lappin G, Shishikura Y, Jochemsen R, Weaver RJ, Gesson C, Houston B, et al. Pharmacokinetics of fexofenadine: evaluation of a microdose and assessment of absolute oral bioavailability. Eur J Pharm Sci. 2010;40(2):125–31.PubMed CrossRef
    3.Denton CL, Minthorn E, Carson SW, Young GC, Richards-Peterson LE, Botbyl J, et al. Concomitant oral and intravenous pharmacokinetics of dabrafenib, a BRAF inhibitor, in patients with BRAF V600 mutation-positive solid tumors. J Clin Pharmacol. 2013;53(9):955–61.PubMed CrossRef
    4.Croft M, Keely B, Morris I, Tann L, Lappin G. Predicting drug candidate victims of drug-drug interactions, using microdosing. Clin Pharmacokinet. 2012;51(4):237–46.PubMed CrossRef
    5.Food and Drug Administration (FDA), Center for Drug Evaluation and Research (CDER). Guidance for industry, investigators, and reviewers - exploratory IND studies. Rockville: FDA; 2006.
    6.Brown K, Dingley KH, Turteltaub KW. Accelerator mass spectrometry for biomedical research. Methods Enzymol. 2005;402:423–43.PubMed CrossRef
    7.Jacobson-Kram D, Mills G. Leveraging exploratory investigational new drug studies to accelerate drug development. Clin Cancer Res. 2008;14(12):3670–4.PubMed CrossRef
    8.Lappin G, Seymour M, Gross G, Jørgensen M, Kall M, Kværnø L. Meeting the MIST regulations: human metabolism in phase I using AMS and a tiered bioanalytical approach. Bioanalysis. 2012;4(4):407–16.PubMed CrossRef
    9.Morris CA, Dueker SR, Lohstroh PN, Wang LQ, Fang XP, Jung D, et al. Mass balance and metabolism of the antimalarial pyronaridine in healthy volunteers. Eur J Drug Metab Pharmacokinet. 2014. doi:10.​1007/​s13318-014-0182-0 .PubMed
    10.Mooij MG, van Duijn E, Knibbe CA, Windhorst AD, Hendrikse NH, Vaes WH, et al. Pediatric microdose study of [14C]paracetamol to study drug metabolism using accelerated mass spectrometry: proof of concept. Clin Pharmacokinet. 2014;53(11):1045–51.PubMed PubMedCentral CrossRef
    11.Gordi T, Baillie R, le Vuong T, Abidi S, Dueker S, Vasquez H, et al. Pharmacokinetic analysis of 14C-ursodiol in newborn infants using accelerator mass spectrometry. J Clin Pharmacol. 2014;54(9):1031–7.PubMed CrossRef
    12.Lappin G, Noveck R, Burt T. Microdosing and drug development: past, present and future. Expert Opin Drug Metab Toxicol. 2013;9(7):817–34.PubMed PubMedCentral CrossRef
    13.Lappin G. Microdosing: current and the future. Bioanalysis. 2010;2(3):509–17.PubMed CrossRef
    14.Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, Chu X, et al. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9:215–36.PubMed CrossRef
    15.Food and Drug Administration (FDA), Center for Drug Evaluation and Research (CDER). Guidance for industry, drug interaction studies—study design, data analysis, implications for dosing, and labeling recommendations. Silver Spring: FDA; 2012.
    16.European Medicine Agency (EMA), Committee for Human Medicinal Products (CHMP). Guideline on the investigation of drug interactions. London: EMA; 2012.
    17.Ludden TM. Nonlinear pharmacokinetics: clinical Implications. Clin Pharmacokinet. 1991;20(6):429–46.PubMed CrossRef
    18.Amidon GL, Lennernäs H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12(3):413–20.PubMed CrossRef
    19.Huang W, Lee SL, Yu LX. Mechanistic approaches to predicting oral drug absorption. AAPS J. 2009;11(2):217–24.PubMed PubMedCentral CrossRef
    20.Lennernäs H. Modeling gastrointestinal drug absorption requires more in vivo biopharmaceutical data: experience from in vivo dissolution and permeability studies in humans. Curr Drug Metab. 2007;8(7):645–57.PubMed CrossRef
    21.Tu M, Mathiowetz AM, Pfefferkorn JA, Cameron KO, Dow RL, Litchfield J, et al. Medicinal chemistry design principles for liver targeting through OATP transporters. Curr Top Med Chem. 2013;13(7):857–66.PubMed CrossRef
    22.Rowland M, Tozer TN. Clinical pharmacokinetics and pharmacodynamics—concepts and applications. 4th ed. Baltimore: Williams & Wilkins; 2011.
    23.Weiner IM, Blanchard KC, Mudge GH. Factors influencing renal excretion of foreign organic acids. Am J Physiol. 1964;207:953–63.PubMed
    24.Rostami-Hodjegan A, Tucker G. ‘In silico’ simulations to assess the ‘in vivo’ consequences of ‘in vitro’ metabolic drug-drug interactions. Drug Discov Today Technol. 2004;1(4):441–8.PubMed CrossRef
    25.Bosgra S, van Eijkeren J, Bos P, Zeilmaker M, Slob W. An improved model to predict physiologically based model parameters and their inter-individual variability from anthropometry. Crit Rev Toxicol. 2012;42(9):751–67.PubMed CrossRef
    26.Ito K, Chiba K, Horikawa M, Ishigami M, Mizuno N, Aoki J, et al. Which concentration of the inhibitor should be used to predict in vivo drug interactions from in vitro data? AAPS Pharm Sci. 2002;4(4):E25.CrossRef
    27.Westerhout J, van de Steeg E, Grossouw D, Zeijdner EE, Krul CA, Verwei M, et al. A new approach to predict human intestinal absorption using porcine intestinal tissue and biorelevant matrices. Eur J Pharm Sci. 2014;63:167–77.PubMed CrossRef
    28.Obach RS. Prediction of human clearance of twenty-nine drugs from hepatic microsomal intrinsic clearance data: an examination of in vitro half-life approach and nonspecific binding to microsomes. Drug Metab Dispos. 1999;27(11):1350–9.PubMed
    29.Chiba M, Ishii Y, Sugiyama Y. Prediction of hepatic clearance in human from in vitro data for successful drug development. AAPS J. 2009;11(2):262–76.PubMed PubMedCentral CrossRef
    30.Oie S, Tozer TN. Effect of altered plasma protein binding on apparent volume of distribution. J Pharm Sci. 1979;68:1203–5.PubMed CrossRef
    31.Lombardo F, Obach RS, Shalaeva MY, Gao F. Prediction of volume of distribution values in humans for neutral and basic drugs using physicochemical measurements and plasma protein binding data. J Med Chem. 2002;45:2867–76.PubMed CrossRef
    32.Lombardo F, Obach RS, Shalaeva MY, Gao F. Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics. J Med Chem. 2004;47:1242–50.PubMed CrossRef
    33.Lappin G, Shishikura Y, Jochemsen R, Weaver RJ, Gesson C, Houston JB, et al. Comparative pharmacokinetics between a microdose and therapeutic dose for clarithromycin, sumatriptan, propafenone, paracetamol (acetaminophen), and phenobarbital in human volunteers. Eur J Pharm Sci. 2011;43(3):141–50.PubMed CrossRef
    34.Lappin G, Kuhnz W, Jochemsen R, Kneer J, Chaudhary A, Oosterhuis B, et al. Use of microdosing to predict pharmacokinetics at the therapeutic dose: experience with 5 drugs. Clin Pharmacol Ther. 2006;80(3):203–15.PubMed CrossRef
    35.Ieiri I, Nishimura C, Maeda K, Sasaki T, Kimura M, Chiyoda T, et al. Pharmacokinetic and pharmacogenomic profiles of telmisartan after the oral microdose and therapeutic dose. Pharmacogenet Genomics. 2011;21(8):495–505.PubMed CrossRef
    36.Maeda K, Takano J, Ikeda Y, Fujita T, Oyama Y, Nozawa K, et al. Nonlinear pharmacokinetics of oral quinidine and verapamil in healthy subjects: a clinical microdosing study. Clin Pharmacol Ther. 2011;90(2):263–70.PubMed CrossRef
    37.Williams JA, Ring BJ, Cantrell VE, Jones DR, Eckstein J, Ruterbories K, et al. Comparative metabolic capabilities of CYP3A4, CYP3A5, and CYP3A7. Drug Metab Dispos. 2002;30(8):883–91.PubMed CrossRef
    38.Togami K, Chono S, Morimoto K. Transport characteristics of clarithromycin, azithromycin and telithromycin, antibiotics applied for treatment of respiratory infections, in Calu-3 cell monolayers as model lung epithelial cells. Pharmazie. 2012;67(5):389–93.PubMed
    39.Andersson T, Miners JO, Veronese ME, Birkett DJ. Diazepam metabolism by human liver microsomes is mediated by both S-mephenytoin hydroxylase and CYP3A isoforms. Br J Clin Pharmacol. 1994;38(2):131–7.PubMed PubMedCentral CrossRef
    40.Wang RW, Newton DJ, Scheri TD, Lu AY. Human cytochrome P450 3A4-catalyzed testosterone 6 beta-hydroxylation and erythromycin N-demethylation. Competition during catalysis. Drug Metab Dispos. 1997;25(4):502–7.PubMed
    41.Nozinic D, Milic A, Mikac L, Ralic J, Padovan J, Antolovic R. Assessment of macrolide transport using PAMPA, Caco-2 and MDCKII-hMDR1 assays. Croat Chem Acta. 2010;83:323–31.
    42.Kobayashi Y, Sakai R, Ohshiro N, Ohbayashi M, Kohyama N, Yamamoto T. Possible involvement of organic anion transporter 2 on the interaction of theophylline with erythromycin in the human liver. Drug Metab Dispos. 2005;33(5):619–22.PubMed CrossRef
    43.Petri N, Tannergren C, Rungstad D, Lennernäs H. Transport characteristics of fexofenadine in the Caco-2 cell model. Pharm Res. 2004;21(8):1398–404.PubMed CrossRef
    44.Cvetkovic M, Leake B, Fromm MF, Wilkinson GR, Kim RB. OATP and P-glycoprotein transporters mediate the cellular uptake and excretion of fexofenadine. Drug Metab Dispos. 1999;27(8):866–71.PubMed
    45.Liu Y, Ramírez J, Ratain MJ. Inhibition of paracetamol glucuronidation by tyrosine kinase inhibitors. Br J Clin Pharmacol. 2011;71(6):917–20.PubMed PubMedCentral CrossRef
    46.Riches Z, Bloomer J, Patel A, Nolan A, Coughtrie M. Assessment of cryopreserved human hepatocytes as a model system to investigate sulfation and glucuronidation and to evaluate inhibitors of drug conjugation. Xenobiotica. 2009;39(5):374–81.PubMed CrossRef
    47.Hemeryck A, De Vriendt C, Belpaire FM. Effect of selective serotonin reuptake inhibitors on the oxidative metabolism of propafenone: in vitro studies using human liver microsomes. J Clin Psychopharmacol. 2000;20(4):428–34.PubMed CrossRef
    48.Ekins S, Bravi G, Wikel JH, Wrighton SA. Three-dimensional-quantitative structure activity relationship analysis of cytochrome P-450 3A4 substrates. J Pharmacol Exp Ther. 1999;291(1):424–33.PubMed
    49.Shirasaka Y, Masaoka Y, Kataoka M, Sakuma S, Yamashita S. Scaling of in vitro membrane permeability to predict P-glycoprotein-mediated drug absorption in vivo. Drug Metab Dispos. 2008;36(5):916–22.PubMed CrossRef
    50.Ebner T, Schänzle G, Weber W, Sent U, Elliott J. In vitro glucuronidation of the angiotensin II receptor antagonist telmisartan in the cat: a comparison with other species. J Vet Pharmacol Ther. 2013;36(2):154–60.PubMed CrossRef
    51.Ishiguro N, Maeda K, Kishimoto W, Saito A, Harada A, Ebner T, et al. Predominant contribution of OATP1B3 to the hepatic uptake of telmisartan, an angiotensin II receptor antagonist, in humans. Drug Metab Dispos. 2006;34(7):1109–15.PubMed CrossRef
    52.Yazdanian M, Glynn SL, Wright JL, Hawi A. Correlating partitioning and caco-2 cell permeability of structurally diverse small molecular weight compounds. Pharm Res. 1998;15(9):1490–4.PubMed CrossRef
    53.Tolle-Sander S, Rautio J, Wring S, Polli JW, Polli JE. Midazolam exhibits characteristics of a highly permeable P-glycoprotein substrate. Pharm Res. 2003;20(5):757–64.PubMed CrossRef
    54.Yamashita S, Furubayashi T, Kataoka M, Sakane T, Sezaki H, Tokuda H. Optimized conditions for prediction of intestinal drug permeability using Caco-2 cells. Eur J Pharm Sci. 2000;10(3):195–204.PubMed CrossRef
    55.Castillo-Garit JA, Marrero-Ponce Y, Torrens F, García-Domenech R. Estimation of ADME properties in drug discovery: predicting Caco-2 cell permeability using atom-based stochastic and non-stochastic linear indices. J Pharm Sci. 2008;97(5):1946–76.PubMed CrossRef
    56.Rodrigues AD, Roberts EM, Mulford DJ, Yao Y, Ouellet D. Oxidative metabolism of clarithromycin in the presence of human liver microsomes. Major role for the cytochrome P4503A (CYP3A) subfamily. Drug Metab Dispos. 1997;25(5):623–30.PubMed
    57.Swift B, Tian X, Brouwer KLR. Integration of preclinical and clinical data with pharmacokinetic modeling and simulation to evaluate fexofenadine as a probe for hepatobiliary transport function. Pharm Res. 2009;26(8):1942–51.PubMed PubMedCentral CrossRef
    58.Naritomi Y, Terashita S, Kagayama A, Sugiyama Y. Utility of hepatocytes in predicting drug metabolism: comparison of hepatic intrinsic clearance in rats and humans in vivo and in vitro. Drug Metab Dispos. 2003;31(5):580–8.PubMed CrossRef
    59.Barter ZE, Bayliss MK, Beaune PH, Boobis AR, Carlile DJ, Edwards RJ, et al. Scaling factors for the extrapolation of in vivo metabolic drug clearance from in vitro data: reaching a consensus on values of human microsomal protein and hepatocellularity per gram of liver. Curr Drug Metab. 2007;8(1):33–45.PubMed CrossRef
    60.Niwa T, Murayama N, Emoto C, Yamazaki H. Comparison of kinetic parameters for drug oxidation rates and substrate inhibition potential mediated by cytochrome P450 3A4 and 3A5. Curr Drug Metab. 2008;9(1):20–33.PubMed CrossRef
    61.Snyder R, Sangar R, Wang J, Ekins S. Three-dimensional quantitative structure activity relationship for CYP2D6 substrates. QSAR. 2002;21:357–68.
    62.Williams JA, Hyland R, Jones BC, Smith DA, Hurst S, Goosen TC, et al. Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab Dispos. 2004;32(11):1201–8.PubMed CrossRef
    63.Nagar S, Walther S, Blanchard RL. Sulfotransferase (SULT) 1A1 polymorphic variants *1, *2, and *3 are associated with altered enzymatic activity, cellular phenotype, and protein degradation. Mol Pharmacol. 2006;69(6):2084–92.PubMed CrossRef
    64.Riches Z, Stanley EL, Bloomer JC, Coughtrie MW. Quantitative evaluation of the expression and activity of five major sulfotransferases (SULTs) in human tissues: the SULT “pie”. Drug Metab Dispos. 2009;37(11):2255–61.PubMed PubMedCentral CrossRef
    65.Cole GB, Keum G, Liu J, Small GW, Satyamurthy N, Kepe V, et al. Specific estrogen sulfotransferase (SULT1E1) substrates and molecular imaging probe candidates. Proc Natl Acad Sci. 2010;107(14):6222–7.PubMed PubMedCentral CrossRef
    66.Hashiguchi T, Kurogi K, Sakakibara Y, Yamasaki M, Nishiyama K, Yasuda S, et al. Enzymatic sulfation of tocopherols and tocopherol metabolites by human cytosolic sulfotransferases. Biosci Biotechnol Biochem. 2011;75(10):1951–6.PubMed CrossRef
    67.Roth M, Obaidat A, Hagenbuch B. OATPs, OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Br J Pharmacol. 2012;165(5):1260–87.PubMed PubMedCentral CrossRef
    68.Levy G, Mager DE, Cheung WK, Jusko WJ. Comparative pharmacokinetics of coumarin anticoagulants L: physiologic modeling of S-warfarin in rats and pharmacologic target-mediated warfarin disposition in man. J Pharm Sci. 2003;92(5):985–94.PubMed CrossRef
    69.Gill KL, Houston JB, Galetin A. Characterization of in vitro glucuronidation clearance of a range of drugs in human kidney microsomes: comparison with liver and intestinal glucuronidation and impact of albumin. Drug Metab Dispos. 2012;40(4):825–35.PubMed PubMedCentral CrossRef
    70.Cubitt HE, Houston JB, Galetin A. Prediction of human drug clearance by multiple metabolic pathways: integration of hepatic and intestinal microsomal and cytosolic data. Drug Metab Dispos. 2011;39(5):864–73.PubMed CrossRef
    71.Zou P, Zheng N, Yang Y, Yu LX, Sun D. Prediction of volume of distribution at steady state in humans: comparison of different approaches. Expert Opin Drug Metab Toxicol. 2012;8(7):855–72.PubMed CrossRef
    72.Sugiyama Y, Yamashita S. Impact of microdosing clinical study—why necessary and how useful? Adv Drug Deliv Rev. 2011;63(7):494–502.PubMed CrossRef
    73.Vlaming M, van Duijn E, Dillingh MR, Brands R, Windhorst AD, Hendrikse NH, et al. Microdosing of a carbon-14 labeled protein in healthy volunteers accurately predicts its pharmacokinetics at therapeutic dosages. Clin Pharmacol Ther. 2015;. doi:10.​1002/​cpt.​131 (Epub 2015 Apr 13).PubMed
    74.Smith BP, Vandenhende FR, DeSante KA, Farid NA, Welch PA, Callaghan JT, et al. Confidence interval criteria for assessment of dose proportionality. Pharm Res. 2000;17:1278–83.PubMed CrossRef
    75.Hummel J, McKendrick S, Brindley C, French R. Exploratory assessment of dose proportionality: review of current approaches and proposal for a practical criterion. Pharm Stat. 2009;8(1):38–49.PubMed CrossRef
  • 作者单位:Sieto Bosgra (1)
    Maria L. H. Vlaming (1) (2)
    Wouter H. J. Vaes (1)

    1. TNO, Utrechtseweg 48, 3704 HE, Zeist, The Netherlands
    2. Pluriomics B.V., Leiden, The Netherlands
  • 刊物主题:Pharmacotherapy; Pharmacology/Toxicology; Internal Medicine;
  • 出版者:Springer International Publishing
  • ISSN:1179-1926
文摘
Microdosing studies allow clinical investigation of pharmacokinetics earlier in drug development, before all high-dose safety concerns have been sorted out. Furthermore, microdosing allows inclusion of target groups that are inadmissible in high-dose phase I trials. A potential concern when considering a microdosing study is that a particular drug candidate may display non-linear pharmacokinetics. Saturation of, for example, membrane transport or metabolism at exposure levels between the microdose and therapeutic dose may limit the predictivity of high-dose pharmacokinetics from microdose observations. Guidance on the likelihood of appreciable non-linear pharmacokinetics based on preclinical information can be helpful in staging the clinical phase and the place of microdosing in it. We present a decision tree that evaluates concerns about non-linearities raised in the preclinical phase and their potential impact on the proportionality between microdose and intended therapeutic dose as predicted from preclinical information. The expected maximum concentrations at relevant sites are estimated by non-compartmental methods. These are compared with dissolution, Michaelis constants for active or enzymatic processes, and binding protein concentrations to assess the potential saturation of the processes below therapeutic doses. The decision tree was applied to ten published cases comparing microdose and therapeutic dose pharmacokinetics, for which concerns about non-linear pharmacokinetics were raised a priori. The decision tree was able to discriminate cases showing substantial non-linearities from cases displaying dose-proportional pharmacokinetics. The recommendations described in this paper may be useful in deciding whether a microdosing study is a sensible option to gain early insight in clinical pharmacokinetics of drug candidates.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700