用户名: 密码: 验证码:
Mapping migratory flyways in Asia using dynamic Brownian bridge movement models
详细信息    查看全文
  • 作者:Eric C Palm (1)
    Scott H Newman (2)
    Diann J Prosser (1)
    Xiangming Xiao (3) (4)
    Luo Ze (5)
    Nyambayar Batbayar (6)
    Sivananinthaperumal Balachandran (7)
    John Y Takekawa (8) (9)

    1. U.S. Geological Survey
    ; Patuxent Wildlife Research Center ; Beltsville ; MD ; 20705 ; USA
    2. Food and Agriculture Organization of the United Nations
    ; Emergency Center for Transboundary Animal Disease ; Hanoi ; Vietnam
    3. Department of Botany and Microbiology
    ; Center for Spatial Analysis ; University of Oklahoma ; Norman ; OK ; 73019 ; USA
    4. Institute of Biodiversity Science
    ; Fudan University ; Shanghai ; 200433 ; China
    5. Computer Network Information Center (CNIC)
    ; Chinese Academy of Sciences ; Beijing ; 100080 ; China
    6. Wildlife Science and Conservation Center
    ; Ulaanbaatar ; 210351 ; Mongolia
    7. Bombay Natural History Society
    ; Hornbill House ; Mumbai ; 400 001 ; India
    8. U.S. Geological Survey
    ; Western Ecological Research Center ; San Francisco Bay Estuary Field Station ; Vallejo ; CA ; 94592 ; USA
    9. National Audubon Society
    ; Science Division ; 220 Montgomery Street ; San Francisco ; CA ; 94104 ; USA
  • 关键词:Dynamic Brownian bridge movement model ; Flyways ; Waterfowl ; Migration ; Stopover sites ; Space use ; Habitat conservation
  • 刊名:Movement Ecology
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:3
  • 期:1
  • 全文大小:2,335 KB
  • 参考文献:1. Hutto RL. On the importance of en route periods to the conservation of migratory landbirds. Stud Avian Biol. 2000;20:109鈥?4.
    2. Faaborg J, Holmes RT, Anders AD, Bildstein KL, Dugger KM, Gauthreaux SA, et al. Recent advances in understanding migration systems of New World land birds. Ecol Monogr. 2010;80:3鈥?8. CrossRef
    3. Newton I. The Migration Ecology of Birds. San Francisco, CA: Academic Press; 2008.
    4. Sillett TS, Holmes RT. Variation in survivorship of a migratory songbird throughout its annual cycle. J Anim Ecol. 2002;71:296鈥?08. CrossRef
    5. Bonter DN, Gauthreaux SA, Donovan TM. Characteristics of important stopover locations for migrating birds: Remote sensing with radar in the Great Lakes Basin. Conserv Biol. 2009;23:440鈥?. CrossRef
    6. Klaassen RH, Hake M, Strandberg R, Koks BJ, Trierweiler C, Exo K-M, et al. When and where does mortality occur in migratory birds? Direct evidence from long鈥恡erm satellite tracking of raptors. J Anim Ecol. 2014;83:176鈥?4. CrossRef
    7. Takekawa JY, Newman SH, Xiao XM, Prosser DJ, Spragens KA, Palm EC, et al. Migration of waterfowl in the East Asian Flyway and spatial relationship to HPAI H5N1 outbreaks. Avian Dis. 2010;54(1 Suppl):466鈥?6. CrossRef
    8. Bengtsson D, Avril A, Gunnarsson G, Elmberg J, S枚derquist P, Norevik G, et al. Movements, Home-Range Size and Habitat Selection of Mallards during Autumn Migration. PloS One. 2014;9:e100764. CrossRef
    9. De La Cruz SEW, Eadie JM, Miles AK, Yee J, Spragens KA, Palm EC, et al. Resource selection and space use by sea ducks during the non-breeding season: Implications for habitat conservation planning in urbanized estuaries. Biol Cons. 2014;169:68鈥?8. CrossRef
    10. Mack GG, Clark RG. Home-range characteristics, age, body size, and breeding performance of female mallards ( / Anas platyrhynchos). Auk. 2006;123:467鈥?4. CrossRef
    11. Boere GC, Stroud DA. The flyway concept: what it is and what it isn鈥檛. In: Boere GC, Galbraith CA, Stroud DA, editors. Waterbirds Around the World. Edinburgh, UK: The Stationery Office; 2006. p. 40鈥?.
    12. Hochbaum HA. Travels and Traditions of Waterfowl. Minneapolis, MN: University of Minnesota Press; 1955.
    13. Lincoln FC. The Waterfowl Flyways of North America. Washington, D.C.: U.S: Department of Agriculture Circular; 1935. p. 342.
    14. Hawkins AS, Hanson RC, Nelson HK, Reeves HM. Flyways: Pioneering Waterfowl Management in North America. Washington, D.C.: US Fish and Wildlife Service; 1984.
    15. Isakov YA. Proceedings of the Second European Meeting on Wildfowl Conservation: 9鈥?4 May 1966. In: Salverda Z, editor. Proceedings of the Second European Meeting on Wildfowl Conservation: 9鈥?4 May 1966; Noordwijk aan Zee, The Netherlands. The Netherlands: Ministry of Cultural Affairs, Recreation and Social Welfare; 1967. p. 125鈥?8.
    16. Miyabayashi Y, Mundkur T: Atlas of Key Sites for Anatidae in the East Asian Flyway. Kuala Lumpur, Malaysia: Wetlands International; 1999. http://www.jawgp.org/anet/aaa1999/aaaendx.htm.
    17. Barter MA: Shorebirds of the Yellow Sea: Importance, threats and conservation status. Canberra, Australia: Wetlands International; 2002. http://www.wetlands.org/Portals/0/publications/Book/WI_ShorebirdsYellowSea_2002.pdf.
    18. Kirby JS, Stattersfield AJ, Butchart SHM, Evans MI, Grimmett RFA, Jones VR, et al. Key conservation issues for migratory land and waterbird species on the world鈥檚 major flyways. Bird Life Int. 2008;18:S49鈥?3.
    19. Asia-Pacific Migratory Waterbird Conservation Committee. Asia-Pacific Migratory Waterbird Conservation Strategy: 2001鈥?005. Kuala Lumpur, Malaysia: Wetlands International - Asia Pacific; 2001.
    20. Bellrose FC. Ducks, Geese, and Swans of North America. Harrisburg, PA: Stackpole Books; 1976.
    21. Bellrose FC: Waterfowl migration corridors east of the Rocky Mountains in the United States. Illinois Natural History Survey Biology Notes 61. 1968.
    22. Scott DA, Rose PM: Atlas of Anatidae populations in Africa and Western Eurasia. Wetlands International Publication 1996, 41. http://www.wetlands.org/WatchRead/Currentpublications/tabid/56/mod/1570/articleType/download/articleId/1604/Default.aspx.
    23. FAO-USGS Avian Influenza Projects. http://www.werc.usgs.gov/ResearchTopicPage.aspx?id=17.
    24. Webster MS, Marra PP, Haig SM, Bensch S, Holmes RT. Links between worlds: unraveling migratory connectivity. Trends Ecol Evol. 2002;17:76鈥?3. CrossRef
    25. van Winkle W. Comparison of several probabilistic home-range models. J Wildl Manage. 1975;39:118鈥?3. CrossRef
    26. Keating KA, Cherry S. Modeling utilization distributions in space and time. Ecology. 2009;90:1971鈥?0. CrossRef
    27. Horne JS, Garton EO, Krone SM, Lewis JS. Analyzing animal movements using Brownian bridges. Ecology. 2007;88:2354鈥?3. CrossRef
    28. Sawyer H, Kauffman MJ, Nielson RM, Horne JS. Identifying and prioritizing ungulate migration routes for landscape-level conservation. Ecol Appl. 2009;19:2016鈥?5. CrossRef
    29. Kranstauber B, Kays R, LaPoint SD, Wikelski M, Safi K. A dynamic Brownian bridge movement model to estimate utilization distributions for heterogeneous animal movement. J Anim Ecol. 2012;81:738鈥?6. CrossRef
    30. Takekawa JY, Heath SR, Douglas DC, Perry WM, Javed S, Newman SH, et al. Geographic variation in Bar-headed Geese Anser indicus: Connectivity of wintering areas and breeding grounds across a broad front. Wildfowl. 2009;59:100鈥?3.
    31. Vardanis Y, Klaassen RHG, Strandberg R, Alerstam T. Individuality in bird migration: routes and timing. Biol Lett. 2011;7:502鈥?. CrossRef
    32. Trierweiler C, Klaassen RH, Drent RH, Exo KM, Komdeur J, Bairlein F, et al. Migratory connectivity and population-specific migration routes in a long-distance migratory bird. Proc R Soc B. 2014;281:20132897. CrossRef
    33. Lindberg MS, Walker J. Satellite Telemetry in Avian Research and Management: Sample Size Considerations. J Wildl Manage. 2007;71:1002鈥?. CrossRef
    34. Hogan D, Thompson JE, Esler D. Survival of Barrow鈥檚 goldeneyes during remigial molt and fall staging. J Wildl Manage. 2013;77:701鈥?. CrossRef
    35. Byrne ME, Clint McCoy J, Hinton JW, Chamberlain MJ, Collier BA. Using dynamic Brownian bridge movement modelling to measure temporal patterns of habitat selection. J Anim Ecol. 2014;83:1234鈥?3. CrossRef
    36. Jehl Jr JR. Aspects of the molt migration. In: Gwinner E, editor. Bird Migration: Physiology and Ecophysiology. Berlin, Germany: Springer; 1990. p. 102鈥?3. CrossRef
    37. Douglas DC, Weinzierl R, Davidson SC, Kays R, Wikelski M, Bohrer G. Moderating Argos location errors in animal tracking data. Methods Ecol Evol. 2012;3:999鈥?007. CrossRef
    38. Frair JL, Fieberg J, Hebblewhite M, Cagnacci F, DeCesare NJ, Pedrotti L. Resolving issues of imprecise and habitat-biased locations in ecological analyses using GPS telemetry data. Phil Trans R Soc B. 2010;365:2187鈥?00. CrossRef
    39. Kranstauber B, Smolla M: move: Visualizing and analyzing animal track data. R package version 1.2.475. [http://cran.R-project.org/package=move] 2014.
    40. R Core Team: R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2014. [http://www.R-project.org]
    41. Trexler JC, Travis J. Nontraditional regression analyses. Ecology. 1993;74:1629鈥?7. CrossRef
  • 刊物主题:Nature Conservation;
  • 出版者:BioMed Central
  • ISSN:2051-3933
文摘
Background Identifying movement routes and stopover sites is necessary for developing effective management and conservation strategies for migratory animals. In the case of migratory birds, a collection of migration routes, known as a flyway, is often hundreds to thousands of kilometers long and can extend across political boundaries. Flyways encompass the entire geographic range between the breeding and non-breeding areas of a population, species, or a group of species, and they provide spatial frameworks for management and conservation across international borders. Existing flyway maps are largely qualitative accounts based on band returns and survey data rather than observed movement routes. In this study, we use satellite and GPS telemetry data and dynamic Brownian bridge movement models to build upon existing maps and describe waterfowl space use probabilistically in the Central Asian and East Asian-Australasian Flyways. Results Our approach provided new information on migratory routes that was not easily attainable with existing methods to describe flyways. Utilization distributions from dynamic Brownian bridge movement models identified key staging and stopover sites, migration corridors and general flyway outlines in the Central Asian and East Asian-Australasian Flyways. A map of space use from ruddy shelducks depicted two separate movement corridors within the Central Asian Flyway, likely representing two distinct populations that show relatively strong connectivity between breeding and wintering areas. Bar-headed geese marked at seven locations in the Central Asian Flyway showed heaviest use at several stopover sites in the same general region of high-elevation lakes along the eastern Qinghai-Tibetan Plateau. Our analysis of data from multiple Anatidae species marked at sites throughout Asia highlighted major movement corridors across species and confirmed that the Central Asian and East Asian-Australasian Flyways were spatially distinct. Conclusions The dynamic Brownian bridge movement model improves our understanding of flyways by estimating relative use of regions in the flyway while providing detailed, quantitative information on migration timing and population connectivity including uncertainty between locations. This model effectively quantifies the relative importance of different migration corridors and stopover sites and may help prioritize specific areas in flyways for conservation of waterbird populations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700