用户名: 密码: 验证码:
In vitro generation of myofibroblasts-like cells from liver epithelial progenitor cells of rhesus monkey (Macaca mulatta)
详细信息    查看全文
  • 作者:Shaohui Ji (1) (3)
    Xihong Wang (3) (5)
    Jianhong Shu (2)
    Aijing Sun (4)
    Wei Si (3)
    Xiangyu Guo (3)
    Bo Zhao (3) (5)
    Weizhi Ji (3)
    Lifang Jin (1) (3)
  • 关键词:Epithelial ; mesenchymal transition ; Rhesus monkey ; Hepatic progenitor cells ; TGF ; β ; Myofibroblasts ; like cells
  • 刊名:In Vitro Cellular & Developmental Biology - Animal
  • 出版年:2011
  • 出版时间:June 2011
  • 年:2011
  • 卷:47
  • 期:5-6
  • 页码:383-390
  • 全文大小:451KB
  • 参考文献:1. Batlle E.; Sancho E.; Franci C.; Dominguez D.; Monfar M.; Baulida J.; Garcia De Herreros A. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. / Nat. Cell Biol. 2: 84-9; 2000. CrossRef
    2. Bissell D. M.; Roulot D.; George J. Transforming growth factor beta and the liver. / Hepatology 34: 859-67; 2001. CrossRef
    3. Cano A.; Perez-Moreno M. A.; Rodrigo I.; Locascio A.; Blanco M. J.; del Barrio M. G.; Portillo F.; Nieto M. A. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. / Nat. Cell Biol. 2: 76-3; 2000. CrossRef
    4. Cassiman D.; Libbrecht L.; Desmet V.; Denef C.; Roskams T. Hepatic stellate cell/myofibroblast subpopulations in fibrotic human and rat livers. / J. Hepatol. 36: 200-09; 2002. CrossRef
    5. Clark J. B.; Rice L.; Sadiq T.; Brittain E.; Song L.; Wang J.; Gerber D. A. Hepatic progenitor cell resistance to TGF-beta1’s proliferative and apoptotic effects. / Biochem. Biophys. Res. Commun. 329: 337-44; 2005. CrossRef
    6. Fausto N. Liver regeneration. / J. Hepatol. 32: 19-1; 2000. CrossRef
    7. Forbes S. J.; Russo F. P.; Rey V.; Burra P.; Rugge M.; Wright N. A.; Alison M. R. A significant proportion of myofibroblasts are of bone marrow origin in human liver fibrosis. / Gastroenterology 126: 955-63; 2004. CrossRef
    8. Hinz B.; Phan S. H.; Thannickal V. J.; Galli A.; Bochaton-Piallat M. L.; Gabbiani G. The myofibroblast: one function, multiple origins. / Am. J. Pathol. 170: 1807-816; 2007. CrossRef
    9. Ji S.; Jin L.; Guo X.; Ji W. Culture of newborn monkey liver epithelial progenitor cells in chemical defined serum-free medium. / In Vitro Cell. Dev. Biol. Anim. 46: 693-01; 2010. CrossRef
    10. Jiao J.; Friedman S. L.; Aloman C. Hepatic fibrosis. / Curr. Opin. Gastroenterol. 25: 223-29; 2009. CrossRef
    11. Jin L.; Ji S.; Tang X.; Guo X.; Lu Y.; Chen H.; Deng H.; Zhou Q.; Ji W. Isolation and characterization of liver epithelial progenitor cells from normal adult rhesus monkeys (Macaca mulatta). / Cell Res. 19: 268-70; 2009. CrossRef
    12. Kakinuma S.; Ohta H.; Kamiya A.; Yamazaki Y.; Oikawa T.; Okada K.; Nakauchi H. Analyses of cell surface molecules on hepatic stem/progenitor cells in mouse fetal liver. / J. Hepatol. 51: 127-38; 2009. CrossRef
    13. Knittel T.; Kobold D.; Piscaglia F.; Saile B.; Neubauer K.; Mehde M.; Timpl R.; Ramadori G. Localization of liver myofibroblasts and hepatic stellate cells in normal and diseased rat livers: distinct roles of (myo-)fibroblast subpopulations in hepatic tissue repair. / Histochem. Cell Biol. 112: 387-01; 1999. CrossRef
    14. Kon J.; Ooe H.; Oshima H.; Kikkawa Y.; Mitaka T. Expression of CD44 in rat hepatic progenitor cells. / J. Hepatol. 45: 90-8; 2006. CrossRef
    15. Lee J. M.; Dedhar S.; Kalluri R.; Thompson E. W. The epithelial-mesenchymal transition: new insights in signaling, development, and disease. / J. Cell Biol. 172: 973-81; 2006. CrossRef
    16. Leu J. I.; Crissey M. A.; Taub R. Massive hepatic apoptosis associated with TGF-beta1 activation after Fas ligand treatment of IGF binding protein-1-deficient mice. / J. Clin. Invest. 111: 129-39; 2003.
    17. Libbrecht L.; Roskams T. Hepatic progenitor cells in human liver diseases. / Semin. Cell Dev. Biol. 13: 389-96; 2002. CrossRef
    18. Liu Y. Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. / J. Am. Soc. Nephrol. 15: 1-2; 2004. CrossRef
    19. Nguyen L. N.; Furuya M. H.; Wolfraim L. A.; Nguyen A. P.; Holdren M. S.; Campbell J. S.; Knight B.; Yeoh G. C.; Fausto N.; Parks W. T. Transforming growth factor-beta differentially regulates oval cell and hepatocyte proliferation. / Hepatology 45: 31-1; 2007. CrossRef
    20. Nierhoff D.; Ogawa A.; Oertel M.; Chen Y. Q.; Shafritz D. A. Purification and characterization of mouse fetal liver epithelial cells with high in vivo repopulation capacity. / Hepatology 42: 130-39; 2005. CrossRef
    21. Nitou M.; Sugiyama Y.; Ishikawa K.; Shiojiri N. Purification of fetal mouse hepatoblasts by magnetic beads coated with monoclonal anti-e-cadherin antibodies and their in vitro culture. / Exp. Cell Res. 279: 330-43; 2002. CrossRef
    22. Novo E.; di Bonzo L. V.; Cannito S.; Colombatto S.; Parola M. Hepatic myofibroblasts: a heterogeneous population of multifunctional cells in liver fibrogenesis. / Int. J. Biochem. Cell Biol. 41: 2089-093; 2009. CrossRef
    23. Omenetti A.; Porrello A.; Jung Y.; Yang L.; Popov Y.; Choi S. S.; Witek R. P.; Alpini G.; Venter J.; Vandongen H. M.; Syn W. K.; Baroni G. S.; Benedetti A.; Schuppan D.; Diehl A. M. Hedgehog signaling regulates epithelial-mesenchymal transition during biliary fibrosis in rodents and humans. / J. Clin. Invest. 118: 3331-342; 2008.
    24. Parola M.; Marra F.; Pinzani M. Myofibroblast—like cells and liver fibrogenesis: emerging concepts in a rapidly moving scenario. / Mol. Aspects Med. 29: 58-6; 2008. CrossRef
    25. Rastaldi M. P.; Ferrario F.; Giardino L.; Dell’Antonio G.; Grillo C.; Grillo P.; Strutz F.; Muller G. A.; Colasanti G.; D’Amico G. Epithelial-mesenchymal transition of tubular epithelial cells in human renal biopsies. / Kidney Int. 62: 137-46; 2002. CrossRef
    26. Russo F. P.; Alison M. R.; Bigger B. W.; Amofah E.; Florou A.; Amin F.; Bou-Gharios G.; Jeffery R.; Iredale J. P.; Forbes S. J. The bone marrow functionally contributes to liver fibrosis. / Gastroenterology 130: 1807-821; 2006. CrossRef
    27. Rygiel K. A.; Robertson H.; Marshall H. L.; Pekalski M.; Zhao L.; Booth T. A.; Jones D. E.; Burt A. D.; Kirby J. A. Epithelial-mesenchymal transition contributes to portal tract fibrogenesis during human chronic liver disease. / Lab Invest 88: 112-23; 2008. CrossRef
    28. Sanchez A.; Alvarez A. M.; Benito M.; Fabregat I. Transforming growth factor beta modulates growth and differentiation of fetal hepatocytes in primary culture. / J. Cell. Physiol. 165: 398-05; 1995. CrossRef
    29. Sicklick J. K.; Choi S. S.; Bustamante M.; McCall S. J.; Perez E. H.; Huang J.; Li Y. X.; Rojkind M.; Diehl A. M. Evidence for epithelial-mesenchymal transitions in adult liver cells. / Am. J. Physiol. Gastrointest. Liver Physiol. 291: G575–G583; 2006. CrossRef
    30. Thiery J. P. Epithelial-mesenchymal transitions in tumour progression. / Nat. Rev. Cancer 2: 442-54; 2002. CrossRef
    31. Valdes F.; Alvarez A. M.; Locascio A.; Vega S.; Herrera B.; Fernandez M.; Benito M.; Nieto M. A.; Fabregat I. The epithelial mesenchymal transition confers resistance to the apoptotic effects of transforming growth factor Beta in fetal rat hepatocytes. / Mol. Cancer Res. 1: 68-8; 2002.
    32. Willis B. C.; duBois R. M.; Borok Z. Epithelial origin of myofibroblasts during fibrosis in the lung. / Proc. Am. Thorac. Soc. 3: 377-82; 2006. CrossRef
    33. Xu J.; Lamouille S.; Derynck R. TGF-beta-induced epithelial to mesenchymal transition. / Cell Res. 19: 156-72; 2009. CrossRef
    34. Zeisberg M.; Kalluri R. The role of epithelial-to-mesenchymal transition in renal fibrosis. / J. Mol. Med. 82: 175-81; 2004. CrossRef
    35. Zeisberg M.; Yang C.; Martino M.; Duncan M. B.; Rieder F.; Tanjore H.; Kalluri R. Fibroblasts derive from hepatocytes in liver fibrosis via epithelial to mesenchymal transition. / J. Biol. Chem. 282: 23337-3347; 2007. CrossRef
    36. Zhang M.; Zhang Z.; Pan H. Y.; Wang D. X.; Deng Z. T.; Ye X. L. TGF-beta1 induces human bronchial epithelial cell-to-mesenchymal transition in vitro. / Lung 187: 187-94; 2009. CrossRef
  • 作者单位:Shaohui Ji (1) (3)
    Xihong Wang (3) (5)
    Jianhong Shu (2)
    Aijing Sun (4)
    Wei Si (3)
    Xiangyu Guo (3)
    Bo Zhao (3) (5)
    Weizhi Ji (3)
    Lifang Jin (1) (3)

    1. College of Life Science of Shaoxing University, 900# Chennan Dadao, Shaoxing, Zhejiang, 312000, China
    3. Kunming Primate Research Center, and Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
    5. Graduate School, Chinese Academy of Sciences, Beijing, China
    2. School of Life Science of Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
    4. Department of Pathology, Shaoxing People’s Hospital and the First Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
文摘
The origin of the myofibroblast, the primary effector cell of liver fibrosis, is still elusive. Here, we report that fluorescence-activated cell sorting purified E-cad-?rhesus monkey liver epithelial progenitor cells (mLEPCs) may serve as a potential source for liver myofibroblasts. Adult mLEPCs colonies were cultured in medium containing 2?ng/ml transforming growth factor β (TGF-β) and 10% fetal bovine serum (FBS) to induce differentiation. Phenotypic changes of cells were analyzed by morphological observation, immunostaining, and reverse transcription-polymerase chain reaction (RT-PCR). After cultured with TGF-β and FBS, some cells in adult mLEPCs colonies converted to fibroblasts-like cells. Immunostaining showed that fibroblasts-like cells had acquired the expression of mesenchymal cell marker vimentin but lost the expression of epithelial cell marker CK8. Fibroblasts-like cells were maintained in culture for up to 40 passages. RT-PCR analysis revealed that fibroblasts-like cells had acquired the expression of mesenchymal genes (snail, PAI-1, and collagen I) and lost the expression of epithelial specific genes (E-cad, ZO-1, CK18, and occludin). In addition, more than 60% of fibroblasts-like cells expressed myofibroblastic-related proteins such as αSMA, vimentin, and N-cad, which were not presented in mLEPCs. Furthermore, increased cell motility was also detected in these fibroblasts-like cells by time-lapse video observation. Our results demonstrate that hepatic epithelial progenitor cells, mLEPCs, transform to myofibroblast-like cells via epithelial-mesenchymal transition. This finding will facilitate understanding of the origin of myofibroblasts in liver fibrosis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700